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Abstract—We present CUADMM, a GPU-accelerated imple-
mentation of the Alternating Direction Method of Multipliers
(ADMM) for solving large-scale semidefinite programs (SDPs).
CUADMM is designed to efficiently handle multiple blocks
of varying sizes, allowing its application to a wide range of
problems, including contact-rich trajectory optimization. We
demonstrate the performance of CUADMM on two types of prob-
lems: (1) sparse SDPs generated from trajectory optimization
problems, and (2) generic multi-block SDPs. Our results show
that CUADMM outperforms existing solvers, such as MOSEK
and ADMM+, particularly for large or many blocks, making it
a valuable tool for efficiently solving large-scale SDP problems.

I. INTRODUCTION

Motion planning plays a crucial role in robotics, especially
for contact-rich tasks.

A. Problem statement
Let N ∈ N be the planning horizon, {xk}Nk=0 ⊂ Rnx

the state trajectory, and {uk}N−1
k=0 ⊂ Rnu the control inputs.

We want to find the trajectory that minimizes a certain cost
function over the states, control inputs, as well as contact
variables {λk}N−1

k=0 ⊂ Rnλ , which are used to model the
contact forces. Formally, we want to solve the following
optimization problem:

min
{xk}N

k=0,{uk}N−1
k=0 ,{λk}N−1

k=0

ℓN (xN ) +

N−1∑
k=0

ℓ(xk, uk, λk) (1)

s.t.


x0 = xinit

Fk(xk−1, uk−1, λk−1, xk) = 0, k ∈ [N ]

(uk−1, λk−1, xk) ∈ Ck, k ∈ [N ]

(2)

where ℓk for k < N are the instantaneous costs, ℓN is the
terminal cost, Fk are the discretized dynamics constraints, and
Ck represent other types of constraints, such as control limits,
collision avoidance, etc.

B. Sparse Moment-SOS Hierarchy
Assuming that ℓk and Fk are polynomial functions and that

Ck is basic semi-algebraic (that is, described by polynomial
constraints), (1) becomes a Polynomial Optimization Problem
(POP). Such problems can be relaxed as convex problems,
using the Moment-SOS hierarchy [6], which generates a
sequence of convex semidefinite programs (SDPs) that provide
lower bounds converging to the optimal value of the original
POP.

Furthermore, multiple sparsity patterns can be exploited in
the POPs, including correlative sparsity [7], term sparsity [13],

as well as robotics-specific sparsity from kinematics chains
and separable contact modes [5]. Packages such as TSSOS
[8] in Julia or SPOT in C++ [5] automatically generate SDPs
leveraging these sparsity patterns. However, the resulting SDPs
can be very large, and solving them is often a bottleneck in
the planning process.

Due to the rich sparsity structure present in large-scale
POPs and effectively exploited by the sparse Moment-SOS
hierarchy, X can be partitioned into blocks, where each block
corresponds to a single symmetric variable.

An approximate solution to the original POP can therefore
be obtained by solving a multi-block SDP. Formally, if we
denote by Ω the Cartesian product of the symmetric blocks,
and Ω+ ⊂ Ω the subset of Ω for which all the blocks are PSD,
the multi-block SDP can be written as:

min
X

⟨C,X⟩ s.t.

{
⟨Ai, X⟩ = bi, i ∈ [m]

X ∈ Ω+

(3)

for some constraints matrices Ai ∈ Ω, a constraint vector
b ∈ Rm and a cost matrix C ∈ Ω. The blocks of X are denoted
by Xb ∈ Rnb×nb for b ∈ [B], where nb is the size of the b-th
block, and B the number of blocks. The vectorization of X is
denoted by svec(X) ∈ Rn, where n =

∑B
b=1

nb(nb+1)
2 , and is

obtained by stacking the upper triangular part of each block
Xb in a vector, where non-diagonal elements are multiplied
by

√
2.

C. Contributions
In this paper, we present CUADMM, a GPU-accelerated

generic first-order solver for large-scale multi-block semidefi-
nite programs, designed to efficiently solve the SDPs generated
by the Moment-SOS hierarchy. CUADMM is based on the Al-
ternating Direction Method of Multipliers (ADMM) algorithm,
which is well-suited for large-scale optimization problems
[10]. While interior-point methods, implemented in solvers
such as SDPT3 [12] and MOSEK [1], are widely used for
solving SDPs, they can take hours and run out of memory for
large problems. In contrast, CUADMM is designed to be fast
and memory-efficient, and leverages the parallel computing
capabilities of GPUs to accelerate the optimization process.

II. ALGORITHM

A. sGS-ADMM
CUADMM uses the sGS-ADMM variant of the ADMM

algorithm [2]. Considering the multi-block SDP (3), its La-



grangian dual reads:

max
y∈Rm,S∈Ω

⟨b, y⟩ s.t.

{
ATy + S = C

S ∈ Ω+

. (4)

Denoting ΠΩ+
the projection operator on the PSD cone, the

sGS-ADMM can be summarized in Algorithm 1. Note that
along with the traditional ADMM steps (steps 1, 2, and 4), an
additional step specific to sGS-ADMM (step 3) is performed.
While this allows for faster convergence for easier problems,
it can cause convergence issues for harder ones. In practice,
if the algorithm has not converged after a fixed number of
iterations, we switch back to the standard ADMM algorithm
by skipping step 3.

Algorithm 1: sGS-ADMM for solving (4).

Input: Initial points X0, S0 ∈ Ω, τ ∈ (0, 2), σ > 0.
For k = 0, 1, 2, . . . :

Step 1. Compute

r
k+ 1

2
s :=

1

σ
b−A

(
1

σ
Xk + Sk − C

)
, (5)

yk+
1
2 =

(
AAT

)−1
r
k+ 1

2
s (6)

Step 2. Compute

Xk+1
b := Xk + σ(ATyk+

1
2 − C), (7)

Sk+1
b =

1

σ

(
ΠΩ+

(
Xk+1

b

)
−Xk+1

b

)
(8)

Step 3. Compute

rk+1
s :=

1

σ
b−A

(
1

σ
Xk + Sk+1 − C

)
, (9)

yk+1 =
(
AAT

)−1
rk+1
s (10)

Step 4. Compute

Xk+1 = Xk + τσ
(
Sk+1 +ATyk+1 − C

)
(11)

Until terminal conditions hold.
Output:

(
Xk+1, yk+1, Sk+1

)
.

B. Termination conditions
We use the standard maximum Karush-Kuhn-Tucker (KKT)

residual as a condition for termination. We define the primal
and dual residuals ηp and ηd as:

ηp =
∥AX − b∥2
1 + ∥b∥2

, ηd =

∥∥ATy + S − C
∥∥
2

1 + ∥C∥2
, (12)

and the relative duality gap ηg as:

ηg =
| ⟨C,X⟩ − ⟨b, y⟩ |

1 + | ⟨C,X⟩ |+ | ⟨b, y⟩ |
. (13)

If the maximum KKT residual η = max(ηp, ηd, ηg) is smaller
than a certain threshold, the algorithm is considered to have
converged. In practice, first-order methods can only achieve
moderate accuracy (up to η = 10−3 or 10−5), while interior-
point methods can solve the problem to much higher accuracy.
We show in the experiments that this is sufficient to obtain
good solutions for the trajectory optimization problems.

III. IMPLEMENTATION

We implement Algorithm 1 on GPU using C++, CUDA, and
the cuSOLVER and cuBLAS libraries, using double precision
(FP64). Unlike previous work [4], we do not restrict ourselves
to only two blocks sizes, but allow for any number of blocks of
any size. An illustration of the GPU implementation is shown
in Figure 1.

A. PSD cones projection
The projection of X on the Cartesian product of multiple

PSD cones is done by performing an eigenvalue decompo-
sition of each block in X , and putting to zero the negative
eigenvalues.

To do so, the primal variable X in svec form is converted
to sequences of matrices {Mi} grouped by matrix size, using
fast parallel mappings. Each block is then decomposed as
Mi = QiWiQ

T
i using the cuSOLVER library. We then obtain

the projected block ΠS|Mi|(Mi) = Qi max(0,Wi)Q
T
i by

performing the matrix multiplications in parallel. Finally, we
convert the projected blocks back to svec form and concatenate
them to obtain the projected primal variable ΠΩ+(X).
cuSOLVER offers two methods for computing the eigen-

value decomposition: a batched interface using the Jacobi
method, and a single matrix interface using the QR method,
which can be parallelized using multiple CUDA streams.
While the former is more efficient for many small matrices of
the same size, the latter is faster for larger matrices. Therefore,
we use a heuristic to choose, for each block, the method that
minimizes the time to compute the eigenvalue decomposition,
depending on the block size and the number of blocks.

B. Linear system solving
Solving the linear system AATy = rs is done using a

hybrid CPU-GPU approach similar to Kang et al. [4]. After
precomputing the Cholesky factorization AAT = PLDLTPT,
the permutation matrix multiplications are handled on the
GPU, while LDLT system solving is done on CPU using
CHOLMOD [3].

IV. EXPERIMENTS

In this section, we evaluate the performance of CUADMM
on two types of problems: (1) sparse semidefinite programs
(SDPs) generated from contact-rich trajectory optimization
problems (IV-B), and (2) generic multi-block SDPs (IV-C).

A. Setup
We compare the performance of three solvers: MOSEK [1],

ADMM+ [11], and CUADMM. Default CUADMM uses the
standard ADMM algorithm, while CUADMM (sGS) uses the
semi-implicit Gauss-Seidel method.

To help the reader estimate the size of the SDP instances,
we present in the Appendix some properties of the problems.
For the two types of problems, we report the running time
of the solvers, the maximum KKT residual η, as well as the
distance of the primal objective to the optimal value, defined
as

∣∣∣ p−p∗

1+|p|+|p∗|

∣∣∣, where p is the primal objective value, d is the
dual objective value, and p∗ is the primal optimal value found
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Fig. 1. Illustration of the GPU implementation for a problem with three block sizes (one large and two small). On the left, we use a hybrid CPU-GPU
approach for solving the linear system AATy = rs. On the right, we use the eigenvalue decomposition to project the blocks of X on the PSD cones.

by MOSEK after convergence. Solvers are stopped when η is
less than 10−3 and distance of the primal objective to the
optimal value is less than 2 × 10−3, or after 10 hours of
computation time. For large problems where MOSEK takes
more than 10 hours to solve up to 10−8 precision, we drop
the primal distance metric condition.

Experiments were conducted on a high-performance work-
station equipped with a 2.7 GHz AMD 64-Core sWRX8
Processor and 1 TB of RAM, and an NVIDIA RTX 6000
Ada Generation.

B. SPOT SDPs for motion planning
We start by evaluating the performance of CUADMM on

SDP instances generated from contact-rich trajectory optimiza-
tion problems by the SPOT library [5]. To study the impact
of the problem size on the comparative performance of the
solvers, we consider two sets of problems: one with short
planning horizons (N = 1) and one with long planning
horizons (N between 10 and 30).

The properties of the problems are shown in Tables IV
and V of the Appendix. We report SPOT-specific parameters
used to generate the trajectory optimization problem. N is the
planning horizon, “Term sparsity” indicates which algorithm
is used to compute the term sparsity graph [4], and the vector
length denotes the length of the primal vector X in svec form.
Non-specified parameters are set to default values of SPOT.

For both short and long planning horizon, MOSEK outper-
forms CUADMM on easy problems (i.e., Push Box and Push
T), while CUADMM scales much better on hard problems.
ADMM+ is faster than CUADMM on small problems, but is
outperformed by other methods when the number of blocks
increases (see for instance Push T).

While we only solve the problems up to medium precision
(η < 10−3), the visualization of the trajectories (Figures 2
and 3) shows that the trajectories found with low precision
are very close to the ones found with high precision.

C. Generic multi-block SDPs
To demonstrate the effectiveness of CUADMM beyond

trajectory optimization problems, we compare the performance
of the same solvers on multi-block SDP instances collected by
Mittelmann [9]. The properties of the problems are shown in

Fig. 2. Push Box trajectory solved with MOSEK up to precision η < 10−8.

Fig. 3. Push Box trajectory solved with CUADMM up to η = 9.97×10−4.

Table VI, and the results in Table III.
While interior-point methods are much faster than first-

order methods for problems exhibiting blocks of small size (as
seen for the ros_2000 problem), GPU-accelerated first-order
methods outperform interior-point methods for problem with
large or many blocks, such as chs_500 and taha1a, despite
the CPU-GPU transfer overhead. Furthermore, CUADMM is
consistently faster than ADMM+ on all instances, the speed
improvement being more pronounced for larger problems.

V. CONCLUSION

We presented CUADMM, a GPU-based first-order solver
for large-scale multi-block semidefinite programs, designed
to efficiently solve the SDPs generated by the Moment-SOS
hierarchy. CUADMM is based on the Alternating Direction
Method of Multipliers (ADMM) algorithm, along with an im-
plementation of the symmetric Gauss-Seidel variant, making
it more scalable than interior-point methods. Our experimental
results show that CUADMM outperforms existing solvers for
large-scale SDPs, especially those arising from contact-rich
trajectory optimization problems, while still being applicable
to generic multi-block SDPs.



TABLE I
SOLVER RESULTS FOR THE SPOT PROBLEMS WITH SHORT PLANNING HORIZONS.

Problem Solver Time (s) Max. KKT residual η Primal distance

Push Box

MOSEK 1.40 9.87× 10−6 7.21× 10−4

ADMM+ 3.5 4.06× 10−4 7.40× 10−6

CUADMM 6.2 8.31× 10−4 7.40× 10−6

CUADMM (sGS) 6.2 2.28× 10−4 3.33× 10−5

Push T

MOSEK 0.1 2.65× 10−6 1.62× 10−4

ADMM+ 7.6 5.03× 10−4 8.71× 10−5

CUADMM 0.5 1.00× 10−3 1.89× 10−3

CUADMM (sGS) 0.5 1.00× 10−3 1.89× 10−3

Push Bot

MOSEK 32.5 1.23× 10−6 3.17× 10−4

ADMM+ 1.9 4.02× 10−4 9.98× 10−5

CUADMM 1.0 2.48× 10−4 1.34× 10−4

CUADMM (sGS) 1.2 7.15× 10−4 9.98× 10−5

Planar Hand

MOSEK 405.5 2.32× 10−4 1.38× 10−3

ADMM+ 32.2 4.87× 10−4 3.26× 10−4

CUADMM 54.2 9.98× 10−4 2.42× 10−7

CUADMM (sGS) 77.0 9.99× 10−4 1.36× 10−7

Tunnel

MOSEK 3, 764.8 1.12× 10−6 4.82× 10−4

ADMM+ 339.8 3.14× 10−4 9.81× 10−4

CUADMM 471.8 6.14× 10−4 1.57× 10−3

CUADMM (sGS) 793.1 7.96× 10−4 1.57× 10−3

TABLE II
SOLVER RESULTS FOR THE SPOT PROBLEMS WITH LONG PLANNING HORIZONS. “—” INDICATES A TIMEOUT AFTER 10 HOURS.

Problem Solver Time (s) Max. KKT residual η Primal distance

Push Box

MOSEK 213.4 8.47× 10−7 9.20× 10−4

ADMM+1 1, 649 2.20× 10−3 1.85× 10−4

CUADMM 905.1 9.98× 10−4 2.96× 10−4

CUADMM (sGS) 278.0 9.97× 10−4 4.97× 10−4

Push T

MOSEK 36.6 2.44× 10−7 8.3× 10−4

ADMM+ — — —
CUADMM 142.0 1.61× 10−5 9.03× 10−4

CUADMM (sGS) 186.6 8.24× 10−4 8.99× 10−4

Planar Hand

MOSEK 12, 017 1.91× 10−6 —
ADMM+ — — —

CUADMM — — —
CUADMM (sGS) 1,281 9.95× 10−4 —

Tunnel

MOSEK 32, 593 7.09× 10−6 —
ADMM+ — — —

CUADMM — — —
CUADMM (sGS) 2,491 9.97× 10−4 —

1ADMM+ does not support the relative gap as a stopping criterion, so we report the maximum KKT
residual η at the end of the run. This is the only run where the relative gap condition was not satisfied.

TABLE III
SOLVER RESULTS FOR THE GENERIC MULTI-BLOCK SDPS.

Problem Solver Time (s) Duality gap Primal distance

chs_500

MOSEK 3.88 3.68× 10−4 6.96× 10−5

ADMM+ 91.5 1.73× 10−4 6.06× 10−10

CUADMM 0.2 6.22× 10−4 1.01× 10−9

CUADMM (sGS) 0.7 8.36× 10−4 9.88× 10−10

ros_2000

MOSEK 0.59 2.16× 10−4 6.93× 10−4

ADMM+ 257.8 6.29× 10−4 5.50× 10−4

CUADMM 3.4 9.97× 10−4 1.02× 10−3

CUADMM (sGS) 16.6 9.72× 10−4 9.49× 10−4

taha1a

MOSEK 3.49 1.22× 10−4 2.50× 10−4

ADMM+ 3.8 5.94× 10−4 1.67× 10−4

CUADMM 2.3 5.47× 10−4 7.33× 10−4

CUADMM (sGS) 2.2 9.64× 10−4 6.17× 10−4
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APPENDIX

TABLE IV
PROPERTIES OF THE SPOT PROBLEMS WITH SHORT PLANNING HORIZONS.

Problem N Step (dt) Term sparsity Blocks Largest block Vector length Constraints Non-zeros in A Non-zeros in A (%)
Push Box 1 0.05 MF 37 45 3,813 4,113 9,985 6.36× 10−4

Push T 1 0.01 MF 290 13 1,834 997 2,806 1.53× 10−3

Push Bot 1 0.05 MF 40 66 8,433 11,434 26,194 2.72× 10−4

Planar Hand 1 0.05 MF 122 120 55,179 66,008 156,635 4.30× 10−5

Tunnel 1 0.1 NON 42 165 93,500 105,338 280,092 2.84× 10−5

TABLE V
PROPERTIES OF THE SPOT PROBLEMS WITH LONG PLANNING HORIZONS.

Problem N Term sparsity Blocks Largest block Vector length Constraints Non-zeros in A Non-zeros in A (%)
Push Box 30 MF 1,316 45 170,251 154,256 374,258 1.43× 10−5

Push T 30 MF 18,875 13 86,315 53,290 143,908 3.13× 10−5

Planar Hand 10 MF 1,553 120 533,718 483,707 1,310,651 8.42× 10−7

Tunnel 10 NON 420 165 821,060 820,271 2,617,338 3.82× 10−7

TABLE VI
PROPERTIES OF THE GENERIC MULTI-BLOCK SDPS.

Problem Blocks Largest block Vector length Constraints Non-zeros in A Non-zeros in A (%)
chs_500 4,998 10 274,890 99,974 269,892 9.82× 10−6

ros_2000 1,999 6 41,968 19,988 39,969 4.76× 10−5

taha1a 14 252 116,676 3,002 177,420 5.07× 10−4
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