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What is KernelSOS?

KernelSOS [3] is a sampling-based zeroth-order optimization algorithm, that
solves the following problem:

min f(x).

xecl)

't generalizes the Sum-of-Squares (SOS) optimization framework to cases
where f is non-polynomial or non-parametric.

KernelSOS formulation

Range-only localization

Using only function evaluations f(x;) at sampled points x; € Q, KernelSOS
uses a kernel function k(«x, y) to define a surrogate function, and minimizes
it by solving a Semidefinite Program (SDP):

min f(x) Non-convex
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While in the original SOS framework, we enforce that f—c isasum of squared
polynomials, KernelSOS enforces that f —c is a quadratic form over a Hilbert
space H defined by the kernel k.
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Figure 1. Visualization of the KernelSOS algorithm on a univariate function. The algorithm
minimizes a kernel-defined surrogate function (red) based on samples of the original
function (green).

First, we consider a classic state estimation problem, range-only localization:
m
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where a; are known positions of landmarks, d; are measured distances to the
landmarks, and o; are the measurement noise levels.
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Figure 2. lllustration of the surrogate cost and the benefit of restarts. Left: real cost;
middle: surrogate cost found by the first KernelSOS step; right: surrogate function found
by the first restart (second step). Black crosses represent the known landmarks, and black
x-marks represent the used samples.

Trajectory optimization

Initializing local solvers with KernelSOS

We use KernelSOS to initialize a local solver, FDDP [2]. By leveraging the
local accuracy of FDDP while taking advantage of the global exploration ca-
pabilities of KernelSOS, lower-cost solutions are found (left). The improved
initialization from KernelSOS leads to a lower number of iterations for FDDP
to converge, leading to a similar total runtime (right).
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Figure 4. Comparison of the performance of FDDP depending on the initialization.

Discovering improved trajectories

Considering the following trajectory optimization problem:
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KernelSOS can be used to optimize trajectories in a sampling-based manner,
simply by sampling the cost function ftg, which features many local minima.
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Figure 3. Comparison of KernelSOS and CMA-ES on trajectory optimization problems.

KernelSOS outperforms CMA-ES when the sample density is low. KernelSOS
can be seen as a globally-aware optimization method, while CMA-ES acts in
a more local manner.
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KernelSOS can discover trajectories that are not findable by FDDP alone, as
it explores the space more globally.
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