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What is KernelSOS?

KernelSOS [3] is a sampling-based zeroth-order optimization algorithm, that

solves the following problem:

min
x∈Ω

f (x).

It generalizes the Sum-of-Squares (SOS) optimization framework to cases

where f is non-polynomial or non-parametric.

KernelSOS formulation

Using only function evaluations f (xi) at sampled points xi ∈ Ω, KernelSOS

uses a kernel function k(x, y) to define a surrogate function, and minimizes

it by solving a Semidefinite Program (SDP):

While in the original SOS framework, we enforce that f−c is a sum of squared

polynomials, KernelSOS enforces that f −c is a quadratic form over a Hilbert

space H defined by the kernel k.

Figure 1. Visualization of the KernelSOS algorithm on a univariate function. The algorithm

minimizes a kernel-defined surrogate function (red) based on samples of the original

function (green).

Range-only localization

First, we consider a classic state estimation problem, range-only localization:

min
x

m∑
i=1

1
σ2

i

(di − ‖x − ai‖2)2︸ ︷︷ ︸
=:fRO-non-sq(x)

, (1)

where ai are known positions of landmarks, di are measured distances to the

landmarks, and σi are the measurement noise levels.
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Figure 2. Illustration of the surrogate cost and the benefit of restarts. Left: real cost;

middle: surrogate cost found by the first KernelSOS step; right: surrogate function found

by the first restart (second step). Black crosses represent the known landmarks, and black

x-marks represent the used samples.

Trajectory optimization

Considering the following trajectory optimization problem:

min
u1:T

‖xT+1(u1:T )‖2 + ρ

T∑
t=1

‖ut‖2

︸ ︷︷ ︸
=:fTO(u1:T | xstart)

s.t. xt+1 = g(xt, ut), x1 = xstart,

KernelSOS can be used to optimize trajectories in a sampling-based manner,

simply by sampling the cost function fTO, which features many local minima.
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Figure 3. Comparison of KernelSOS and CMA-ES on trajectory optimization problems.

KernelSOS outperforms CMA-ESwhen the sample density is low. KernelSOS

can be seen as a globally-aware optimization method, while CMA-ES acts in

a more local manner.

Initializing local solvers with KernelSOS

We use KernelSOS to initialize a local solver, FDDP [2]. By leveraging the

local accuracy of FDDPwhile taking advantage of the global exploration ca-

pabilities of KernelSOS, lower-cost solutions are found (left). The improved

initialization from KernelSOS leads to a lower number of iterations for FDDP

to converge, leading to a similar total runtime (right).
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Figure 4. Comparison of the performance of FDDP depending on the initialization.

Discovering improved trajectories

KernelSOS can discover trajectories that are not findable by FDDP alone, as

it explores the space more globally.

Trajectory found by

random initialization

(cost: 6.2 × 10−4)

Trajectory found by best

sample initialization

(cost: 5.5 × 10−4)

Trajectory found by

kernelSOS initialization

(cost: 5.0 × 10−4)
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