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Problem statement: global optimization
f(z)

Many problems in robotics are
non-convex = local minima

e Estimation: local solution
can lead to unsafe behavior

e Control: local solution can

small
difference lead to suboptimal trajectories
. . T . )
° .
local global !.earnmg. global s.oI.ut|0n can
minimum minimum improve sample efficiency

large difference
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An example: range-only localization

Cost function ¢(6)

©  Anchor
®  Global minimum

Assuming d; ~ N'([|0 — ag|ly,1): O = argmingepa Y72y (di — (10 — axl,)”
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An example: range-only localization

m
min di. — |10 — a 2
i 3 (0~ 10— el

Not polynomial because of the norm! Existing approaches:

e Square the measurements [1]: ® Substitution trick [6]:

- 2\ 2 “ 2
min d—0—a ) min nidy — (0 — ay,
guin, 3~ (4~ 110 ol e g 2 Imics = (0.~ au)l

* Not equivalent to ML problem, but ® Equivalent to ML problem, but
often effective. higher-dimensional and constrained.

Question: is there a better way?
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KernelSOS reformulation [9]
min f(x) Non-convex
maxc  s.t. Ve e Q, fl(x)—c>0 Convex but oo constraints
ce
. Ve, —c= , A H, traint
ceR,ngS)i(H) c s x fl®) —c=(¢(x), Ap(x)) oo space ‘H, oo constraints
ax  e-ATHA) st Vi€ [Ln], fl@)-c = (B(), Ad(e) | P

max c—ATr R /) ], flxi)—c= i), i
cER,AES (H) : n constr.

max c¢—ATr(B) st Vie[l,n], fla;) —c=® B®; SDP

c€R,BES" (R)
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cost & minimizer,
found via SDP

Figure 1: Illustration of the kernelSOS method.
The surrogate function is built using a kernel k(x,z’) and the samples in green.



KernelSOS method

[e]e] lele}

The kernelSOS algorithm

The ®; can be computed using the kernel k(x,z') = (¢(x), p(2))

If K;j = k(x;,x;), then ®; is the i-th column of the Cholesky factorization of Kj;
Choice of kernel:

2
[=—=']

® Gaussian kernel k. (x, ') = exp (— ) of scale factor o

® Laplace kernel k,(x, ) = exp (_ngz> of scale factor o (for non-smooth

functions)

We solve the SDP using a custom damped Newton solver that exploits the
structure of the problem

® \We can retrieve the minimizer using the dual variable
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f(x) f(x)

Figure 2: Gaussian kernel Figure 3: Laplace kernel



KernelSOS method

[e]e]ee] }

Warm restarts

We use a warm restarts procedure, using each time the previous solution as the center of
the search space

— 1

B(ZO,T())

Figure 4: lllustration of the warm restarting mechanism in 2D. The algorithm starts with a large
region B(zp, 7o), and iteratively shrinks it down to B(zy, rw)-
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Range-only localization — Problem statements

m
min di. — |10 — a 2
i 3 (@~ 16 - ]

Not polynomial because of the norm! Existing approaches:

e Square the measurements [1]: ® Substitution trick [6]:

- 2\ 2 “ 2
min d—0—a ) min nidy — (0 — ay,
guin, 3~ (4~ 110 ol e gy - Imici = (0~ au)l

* Not equivalent to ML problem, but ® Equivalent to ML problem, but
often effective. higher-dimensional and constrained.

Question: is there a better way?
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Range-only localization — Methods

Different methods to solve the problem:

global: local solver initialized at ground truth
equationSOS: Shor's relaxation of the POP lifted as a QCQP

sampleSOS: parameterize problem using feasible samples and cost evaluations [2]

kernelSOS: kernel sums of squares on the cost function
® naive: sample the search space and take the best sample

(Ground truth is not necessarily the global minimum for high noise)
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Range-only localization — Error results
nsamples 180
nsq sq
method ‘ method
—— global —— global
—— equationS0S —— equationS0S
—— sampleSOS —— sampleS0S
—— kernelsos — kernelsos
| — naive 1 — naive
10- 1072 1071 10° 10 1072 1071 100
noise noise

Figure 5:

Distance to ground truth as a function of the noise level.
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Range-only localization — Time results
nsq sq
1077 // ]
method %
—— global —— global
@ —— equationSOS —— eguationSOS
E 10714 —— samplesos 1 —— samplesos
—— kernelS0S —— kemelS0S
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1072 4 E
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nsamples nsamples

Figure 6: Time taken to solve the range-only localization problem w.r.t the number of samples.
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Trajectory optimization

® Trajectory optimization problem:

T

I,(Ei?”wT+l(u1:T)“2 + PZ ”utH2 = fTO (ulzT ’ mstart) 5
’ t=1

st. 1 = f(mta 'u't)v T1 = Tstart

for a number of steps T', control penalty p, and initial state @gtayt.
® Optimize over ui.7 only (single shooting)

® Black-box approach: evaluate final cost for different choices of uy.7
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Trajectory optimization — Problems

Single pendulum swing-up Double endulum swing-up

State x = [0, 6] State & = [0, 01, 02, 6]
Control u = [7] Control w = [y, 72]
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Trajectory optimization — Results

Single Pendulum swing-up (7'=4, dt=0.005) Double Pendulum swing-up (7'=4, d¢t=0.005)

Normalized cost
Normalized cost

591 —— KernelSOS 201 — KernelSOS
—— CMA-ES (0 = 05) —— CMA-ES (0 = 0.5)
0 L T T T 15 = T T T
10* 10° 109 10* 10° 109

Dynamics function calls Dynamics function calls

Figure 7: Comparison of performance of kernelSOS and CMA-ES [7] on black-box trajectory
optimization.
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KernelSOS to warm start a first-order method

® Double pendulum swing-up problem

® KernelSOS is used to warm start aligator's iLQR algorithm

® |nitialization methods:
® Random: take one random sample from the search space
® Best sample: take the best sample out of n in the search space
® KernelSOS: use the kernelSOS solution as the initial guess for iLQR
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KernelSOS as a warm start — Cost results

x10~*
6.2
6.0 4
5.8
. ® Average cost improvement: 12%
= TTm— ° e Hemtions ® Max. cost improvement: 20%
5.4 e 50 . . .
o 10 ® Discover new trajectories
® 150 .
5ol o 200 — next slide
250
== Mean cost
oe = Median cost
5.0 4 . . .
KernelSOS Best sample Random

Initialization method

Figure 8: Warm starting of iLQR using kernelSOS.
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Visualization of the trajectories

Trajectory found by random Trajectory found by best  Trajectory found by kernelSOS
init. (cost: 6.2 x 107%)  sample init. (cost: 5.5 x 107%)  init. (cost: 5.0 x 10~%)



KernelSOS method Application to robotics Conclusion and future work
(o] (o] (o]
o} 0000

o]
Q0 (e]e]
00000 [e]e]e]e] ]

KernelSOS as a warm start — Time results

200 4

1501 ® Reduces by 77% the average
1001 number of iterations needed for
] convergence

o

Kernel30S Best sample Random e Similar total time despite longer

1 initialization time
0.84
0.6 4 . . . .
ol KernelSOS finds trajectories with:
0.24 . Dnitialisation time — lower cost

B Local solver time
0.0+
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Average time (s)

Figure 9: Warm starting of iLQR using kernelSOS.
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Conclusion

KernelSOS is a strong new contender in the black-box optimization field
Generalizes the SOS method to non-polynomial functions

Applicable to a wide range of problems

Discover improved solutions in the search space

Lack of precision — local solver to refine the solution
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Other future directions

Application to policy optimization

Automatic parameter tuning, for instance using Sobolev norm estimation
Comparison to standard SOS, using polynomial kernels

Improve warm starting, taking inspiration from Bayesian Optimization [5]
Use of first-order information
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