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Problem statement: global optimization
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∙ Many problems in robotics are
non-convex ⇒ local minima

∙ Estimation: local solution
can lead to unsafe behavior

∙ Control: local solution can
lead to suboptimal trajectories

∙ Learning: global solution can
improve sample efficiency
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An example: range-only localization
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Assuming 𝑑𝑖 ∼ 𝒩 (‖𝜃 − 𝑎𝑘‖2 , 1): 𝜃ML = arg min𝜃∈R𝑑

∑︀𝑚
𝑘=1 (𝑑𝑘 − ‖𝜃 − 𝑎𝑘‖2)2
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An example: range-only localization

min
𝜃∈R𝑑

𝑚∑︁
𝑘=1

(𝑑𝑘 − ‖𝜃 − 𝑎𝑘‖2)2

Not polynomial because of the norm! Existing approaches:

∙ Square the measurements [1]:

min
𝜃∈R𝑑

𝑚∑︁
𝑘=1

(︁
𝑑2

𝑘 − ‖𝜃 − 𝑎𝑘‖2
2

)︁2

∙ Not equivalent to ML problem, but
often effective.

∙ Substitution trick [6]:

min
𝜃∈R𝑑,𝑛𝑘∈S𝑑

𝑚∑︁
𝑘=1

‖𝑛𝑘𝑑𝑘 − (𝜃 − 𝑎𝑘)‖2
2

∙ Equivalent to ML problem, but
higher-dimensional and constrained.

Question: is there a better way?



KernelSOS method Application to robotics Conclusion and future work

KernelSOS reformulation [9]
min
𝑥∈Ω

𝑓(𝑥) Non-convex

max
𝑐∈R

𝑐 s.t. ∀𝑥 ∈ Ω, 𝑓(𝑥) − 𝑐 ⩾ 0 Convex but ∞ constraints

max
𝑐∈R,𝐴∈S+(ℋ)

𝑐 s.t. ∀𝑥 ∈ Ω, 𝑓(𝑥) − 𝑐 = ⟨𝜑(𝑥), 𝐴𝜑(𝑥)⟩ ∞ space ℋ, ∞ constraints

max
𝑐∈R,𝐴∈S+(ℋ)

𝑐−𝜆 Tr(𝐴) s.t. ∀𝑖 ∈ J1, 𝑛K, 𝑓(𝑥𝑖)−𝑐 = ⟨𝜑(𝑥𝑖), 𝐴𝜑(𝑥𝑖)⟩
{︃

∞ space ℋ
𝑛 constr.

max
𝑐∈R,𝐵∈S𝑛

+(R)
𝑐 − 𝜆 Tr(𝐵) s.t. ∀𝑖 ∈ J1, 𝑛K, 𝑓(𝑥𝑖) − 𝑐 = Φ⊤

𝑖 𝐵Φ𝑖 SDP
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arbitrary function 𝑓

surrogate function

cost & minimizer,
found via SDP

pointwise
function
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Figure 1: Illustration of the kernelSOS method.
The surrogate function is built using a kernel 𝑘(𝑥, 𝑥′) and the samples in green.
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The kernelSOS algorithm

∙ The Φ𝑖 can be computed using the kernel 𝑘(𝑥, 𝑥′) = ⟨𝜑(𝑥), 𝜑(𝑥′)⟩
∙ If 𝐾𝑖𝑗 = 𝑘(𝑥𝑖, 𝑥𝑗), then Φ𝑖 is the 𝑖-th column of the Cholesky factorization of 𝐾𝑖𝑗

∙ Choice of kernel:
∙ Gaussian kernel 𝑘𝜎(𝑥, 𝑥′) = exp

(︂
−‖𝑥−𝑥′‖2

2𝜎2

)︂
of scale factor 𝜎

∙ Laplace kernel 𝑘𝜎(𝑥, 𝑥′) = exp
(︂

−‖𝑥−𝑥′‖
𝜎

)︂
of scale factor 𝜎 (for non-smooth

functions)
∙ We solve the SDP using a custom damped Newton solver that exploits the

structure of the problem
∙ We can retrieve the minimizer using the dual variable
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Figure 2: Gaussian kernel Figure 3: Laplace kernel
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Warm restarts
We use a warm restarts procedure, using each time the previous solution as the center of
the search space
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Figure 4: Illustration of the warm restarting mechanism in 2D. The algorithm starts with a large
region 𝐵(𝑧0, 𝑟0), and iteratively shrinks it down to 𝐵(𝑧𝑤, 𝑟𝑤).
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Range-only localization – Problem statements

min
𝜃∈R𝑑

𝑚∑︁
𝑘=1

(𝑑𝑘 − ‖𝜃 − 𝑎𝑘‖2)2

Not polynomial because of the norm! Existing approaches:

∙ Square the measurements [1]:

min
𝜃∈R𝑑

𝑚∑︁
𝑘=1

(︁
𝑑2

𝑘 − ‖𝜃 − 𝑎𝑘‖2
2

)︁2

∙ Not equivalent to ML problem, but
often effective.

∙ Substitution trick [6]:

min
𝜃∈R𝑑,𝑛𝑘∈S𝑑

𝑚∑︁
𝑘=1

‖𝑛𝑘𝑑𝑘 − (𝜃 − 𝑎𝑘)‖2
2

∙ Equivalent to ML problem, but
higher-dimensional and constrained.

Question: is there a better way?
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Range-only localization – Methods

Different methods to solve the problem:
∙ global: local solver initialized at ground truth
∙ equationSOS: Shor’s relaxation of the POP lifted as a QCQP
∙ sampleSOS: parameterize problem using feasible samples and cost evaluations [2]
∙ kernelSOS: kernel sums of squares on the cost function
∙ naive: sample the search space and take the best sample

(Ground truth is not necessarily the global minimum for high noise)
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Range-only localization – Error results

Figure 5: Distance to ground truth as a function of the noise level.
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Range-only localization – Time results

Figure 6: Time taken to solve the range-only localization problem w.r.t the number of samples.
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Trajectory optimization

∙ Trajectory optimization problem:

min
𝑢1:𝑇

‖𝑥𝑇 +1(𝑢1:𝑇 )‖2 + 𝜌
𝑇∑︁

𝑡=1
‖𝑢𝑡‖2 =: 𝑓TO (𝑢1:𝑇 | 𝑥start) ,

s.t. 𝑥𝑡+1 = 𝑓(𝑥𝑡, 𝑢𝑡), 𝑥1 = 𝑥start

for a number of steps 𝑇 , control penalty 𝜌, and initial state 𝑥start.
∙ Optimize over 𝑢1:𝑇 only (single shooting)
∙ Black-box approach: evaluate final cost for different choices of 𝑢1:𝑇
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Trajectory optimization – Problems

Single pendulum swing-up

State 𝑥 = [𝜃, 𝜃]
Control 𝑢 = [𝜏 ]

Double endulum swing-up

State 𝑥 = [𝜃1, 𝜃1, 𝜃2, 𝜃2]
Control 𝑢 = [𝜏1, 𝜏2]
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Trajectory optimization – Results

104 105 106

Dynamics function calls

0

5

10

15

20

25

30

35

40

N
or

m
al

iz
ed

co
st

Single Pendulum swing-up (T=4, dt=0.005)

KernelSOS

CMA-ES (σ = 0.5)

104 105 106

Dynamics function calls

1.5

2.0

2.5

3.0

3.5

4.0

4.5

N
or

m
al

iz
ed

co
st

Double Pendulum swing-up (T=4, dt=0.005)

KernelSOS

CMA-ES (σ = 0.5)

Figure 7: Comparison of performance of kernelSOS and CMA-ES [7] on black-box trajectory
optimization.
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KernelSOS to warm start a first-order method

∙ Double pendulum swing-up problem
∙ KernelSOS is used to warm start aligator’s iLQR algorithm

∙ Initialization methods:
∙ Random: take one random sample from the search space
∙ Best sample: take the best sample out of 𝑛 in the search space
∙ KernelSOS: use the kernelSOS solution as the initial guess for iLQR
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KernelSOS as a warm start – Cost results
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Figure 8: Warm starting of iLQR using kernelSOS.

∙ Average cost improvement: 12%
∙ Max. cost improvement: 20%
∙ Discover new trajectories

→ next slide
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Visualization of the trajectories

Trajectory found by random
init. (cost: 6.2 × 10−4)

Trajectory found by best
sample init. (cost: 5.5 × 10−4)

Trajectory found by kernelSOS
init. (cost: 5.0 × 10−4)
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KernelSOS as a warm start – Time results
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Figure 9: Warm starting of iLQR using kernelSOS.

∙ Reduces by 77% the average
number of iterations needed for
convergence

∙ Similar total time despite longer
initialization time

KernelSOS finds trajectories with:
→ lower cost
→ faster convergence
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Conclusion

∙ KernelSOS is a strong new contender in the black-box optimization field
∙ Generalizes the SOS method to non-polynomial functions
∙ Applicable to a wide range of problems
∙ Discover improved solutions in the search space
∙ Lack of precision −→ local solver to refine the solution
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Other future directions

∙ Application to policy optimization
∙ Automatic parameter tuning, for instance using Sobolev norm estimation
∙ Comparison to standard SOS, using polynomial kernels
∙ Improve warm starting, taking inspiration from Bayesian Optimization [5]
∙ Use of first-order information
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