

KernelSOS for Global Sampling-Based Optimal Control and Estimation via Semidefinite Programming

Antoine Groudiev
École Normale Supérieure

Frederike Dümbgen
WILLOW Team, Inria

Justin Carpentier
WILLOW Team, Inria

August 6, 2025

KernelSOS method

Application to robotics

Conclusion and future work

Plan

KernelSOS method

Problem statement

Range-only localization

KernelSOS algorithm

Application to robotics

Range-only localization

Trajectory optimization

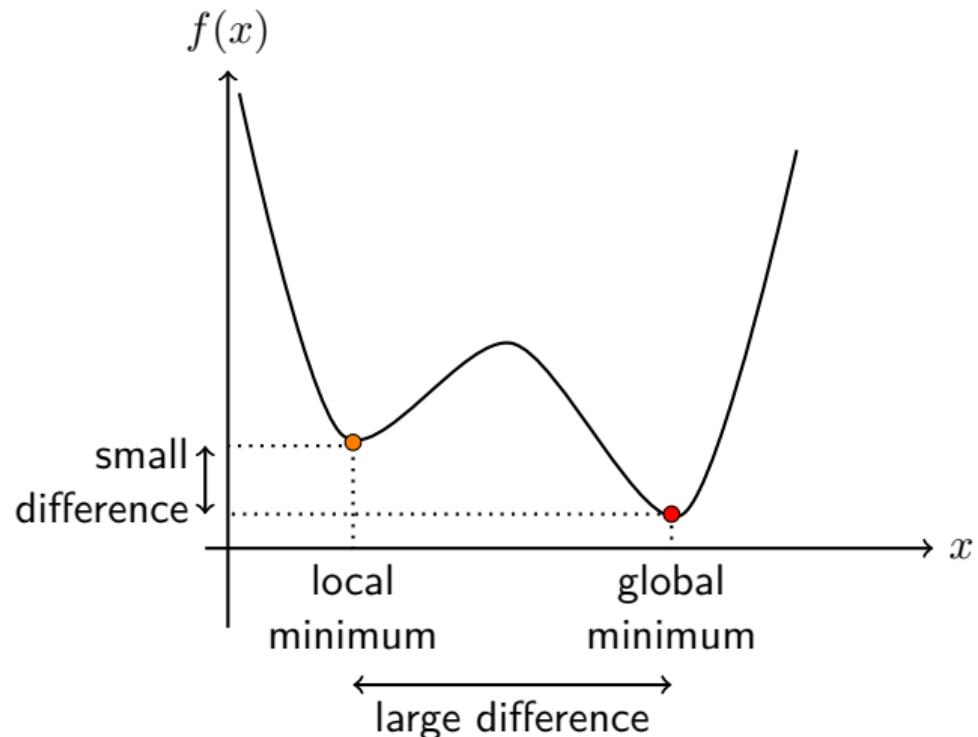
Warm start for trajectory optimization

Conclusion and future work

Conclusion

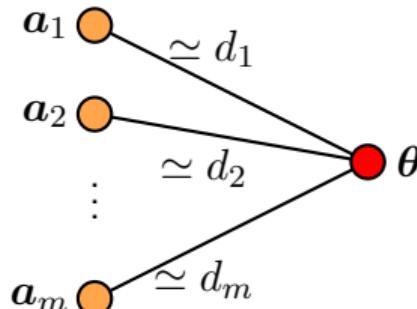
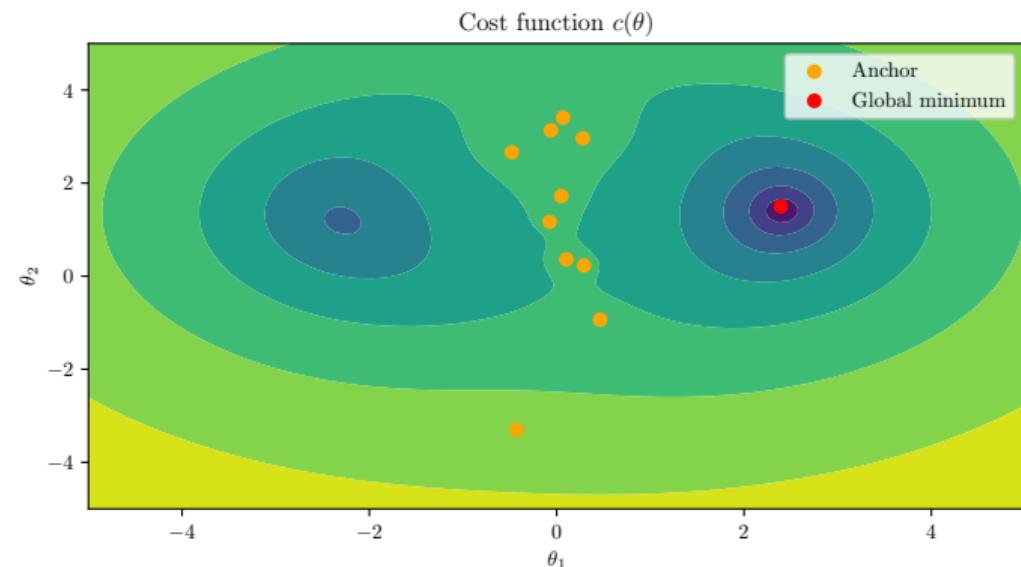
Other future works

Problem statement: global optimization



- Many problems in robotics are non-convex \Rightarrow local minima
- **Estimation:** local solution can lead to unsafe behavior
- **Control:** local solution can lead to suboptimal trajectories
- **Learning:** global solution can improve sample efficiency

An example: range-only localization



Assuming $d_i \sim \mathcal{N}(\|\theta - a_k\|_2, 1)$: $\theta_{\text{ML}} = \arg \min_{\theta \in \mathbb{R}^d} \sum_{k=1}^m (d_k - \|\theta - a_k\|_2)^2$

An example: range-only localization

$$\min_{\theta \in \mathbb{R}^d} \sum_{k=1}^m (d_k - \|\theta - \mathbf{a}_k\|_2)^2$$

Not polynomial because of the norm! Existing approaches:

- Square the measurements [1]:

$$\min_{\theta \in \mathbb{R}^d} \sum_{k=1}^m \left(d_k^2 - \|\theta - \mathbf{a}_k\|_2^2 \right)^2$$

- Substitution trick [6]:

$$\min_{\theta \in \mathbb{R}^d, \mathbf{n}_k \in \mathbb{S}^d} \sum_{k=1}^m \|\mathbf{n}_k d_k - (\theta - \mathbf{a}_k)\|_2^2$$

- Not equivalent to ML problem, but often effective.

- Equivalent to ML problem, but higher-dimensional and constrained.

Question: is there a better way?

KernelSOS reformulation [9]

$$\min_{\mathbf{x} \in \Omega} f(\mathbf{x})$$

Non-convex

$$\max_{c \in \mathbb{R}} c \quad \text{s.t.} \quad \forall \mathbf{x} \in \Omega, f(\mathbf{x}) - c \geq 0$$

Convex but ∞ constraints

$$\max_{c \in \mathbb{R}, \mathbf{A} \in \mathbb{S}_+(\mathcal{H})} c \quad \text{s.t.} \quad \forall x \in \Omega, f(x) - c = \langle \phi(x), \mathbf{A} \phi(x) \rangle \quad \infty \text{ space } \mathcal{H}, \infty \text{ constraints}$$

$$\max_{c \in \mathbb{R}, \mathbf{A} \in \mathbb{S}_+(\mathcal{H})} c - \lambda \text{Tr}(\mathbf{A}) \quad \text{s.t.} \quad \forall i \in \llbracket 1, n \rrbracket, f(\mathbf{x}_i) - c = \langle \phi(\mathbf{x}_i), \mathbf{A} \phi(\mathbf{x}_i) \rangle \quad \begin{cases} \infty \text{ space } \mathcal{H} \\ n \text{ constr.} \end{cases}$$

$$\max_{c \in \mathbb{R}, \mathbf{B} \in \mathbb{S}_+^n(\mathbb{R})} c - \lambda \text{Tr}(\mathbf{B}) \quad \text{s.t.} \quad \forall i \in \llbracket 1, n \rrbracket, f(\mathbf{x}_i) - c = \Phi_i^\top \mathbf{B} \Phi_i \quad \text{SDP}$$

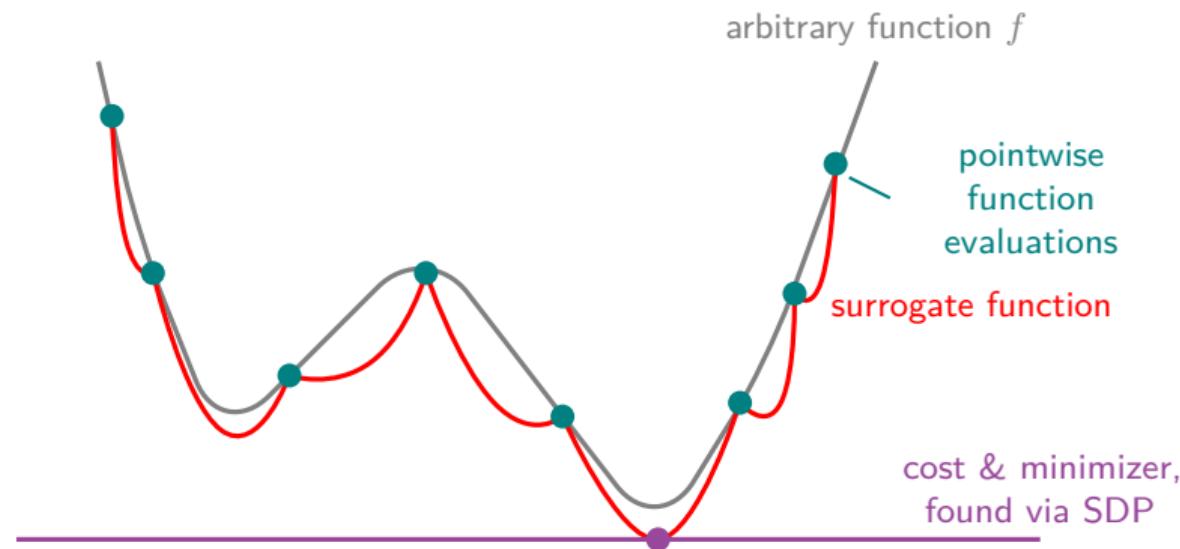


Figure 1: Illustration of the kernelSOS method.

The surrogate function is built using a kernel $k(\mathbf{x}, \mathbf{x}')$ and the samples in green.

The kernelSOS algorithm

- The Φ_i can be computed using the kernel $k(\mathbf{x}, \mathbf{x}') = \langle \phi(\mathbf{x}), \phi(\mathbf{x}') \rangle$
- If $K_{ij} = k(\mathbf{x}_i, \mathbf{x}_j)$, then Φ_i is the i -th column of the Cholesky factorization of K_{ij}
- Choice of kernel:
 - Gaussian kernel $k_\sigma(\mathbf{x}, \mathbf{x}') = \exp\left(-\frac{\|\mathbf{x}-\mathbf{x}'\|^2}{2\sigma^2}\right)$ of scale factor σ
 - Laplace kernel $k_\sigma(\mathbf{x}, \mathbf{x}') = \exp\left(-\frac{\|\mathbf{x}-\mathbf{x}'\|}{\sigma}\right)$ of scale factor σ (for non-smooth functions)
- We solve the SDP using a custom damped Newton solver that exploits the structure of the problem
- We can retrieve the minimizer using the dual variable

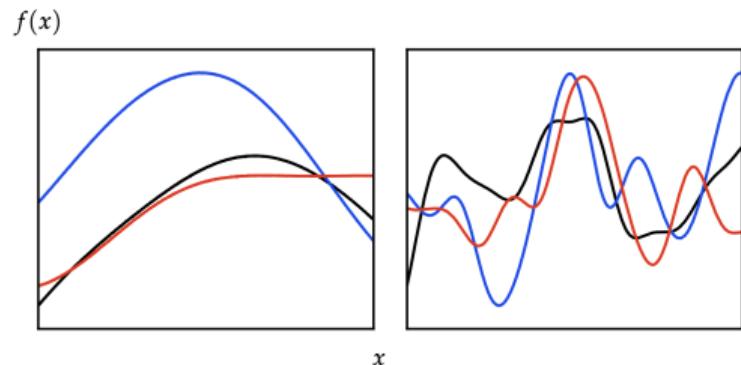


Figure 2: Gaussian kernel

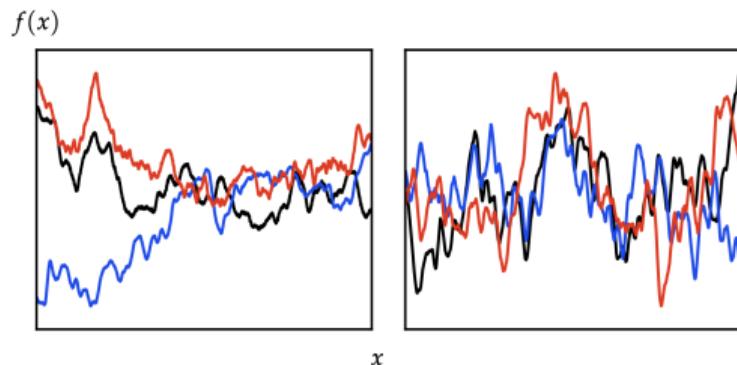


Figure 3: Laplace kernel

Warm restarts

We use a *warm restarts* procedure, using each time the previous solution as the center of the search space

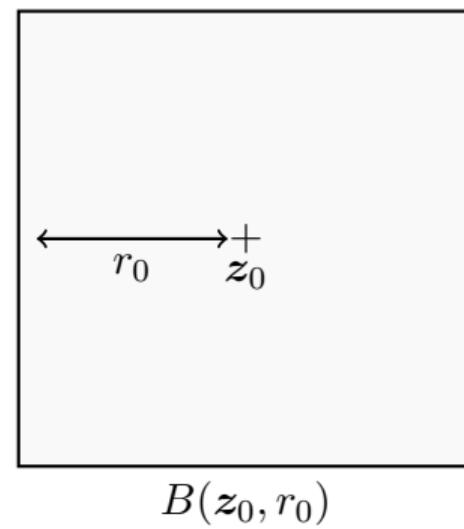


Figure 4: Illustration of the warm restarting mechanism in 2D. The algorithm starts with a large region $B(z_0, r_0)$, and iteratively shrinks it down to $B(z_w, r_w)$.

Warm restarts

We use a *warm restarts* procedure, using each time the previous solution as the center of the search space

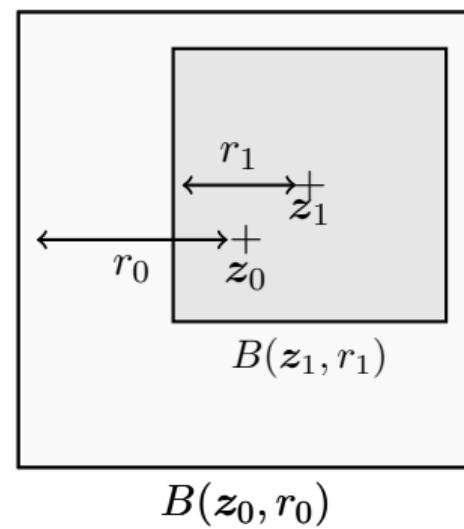


Figure 4: Illustration of the warm restarting mechanism in 2D. The algorithm starts with a large region $B(\mathbf{z}_0, r_0)$, and iteratively shrinks it down to $B(\mathbf{z}_w, r_w)$.

Warm restarts

We use a *warm restarts* procedure, using each time the previous solution as the center of the search space

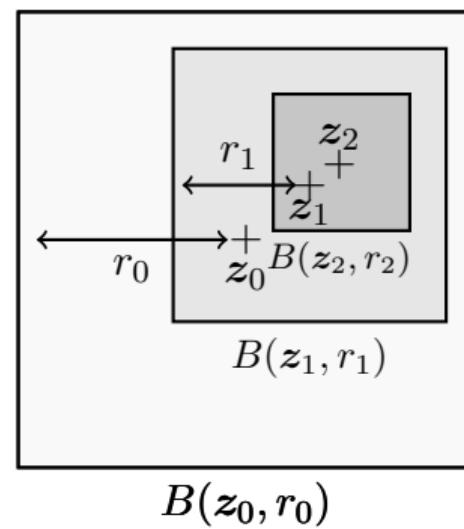


Figure 4: Illustration of the warm restarting mechanism in 2D. The algorithm starts with a large region $B(\mathbf{z}_0, r_0)$, and iteratively shrinks it down to $B(\mathbf{z}_w, r_w)$.

KernelSOS method

Application to robotics

Conclusion and future work

Plan

KernelSOS method

Problem statement

Range-only localization

KernelSOS algorithm

Application to robotics

Range-only localization

Trajectory optimization

Warm start for trajectory optimization

Conclusion and future work

Conclusion

Other future works

Range-only localization – Problem statements

$$\min_{\theta \in \mathbb{R}^d} \sum_{k=1}^m (d_k - \|\theta - \mathbf{a}_k\|_2)^2$$

Not polynomial because of the norm! Existing approaches:

- Square the measurements [1]:

$$\min_{\theta \in \mathbb{R}^d} \sum_{k=1}^m \left(d_k^2 - \|\theta - \mathbf{a}_k\|_2^2 \right)^2$$

- Substitution trick [6]:

$$\min_{\theta \in \mathbb{R}^d, \mathbf{n}_k \in \mathbb{S}^d} \sum_{k=1}^m \|\mathbf{n}_k d_k - (\theta - \mathbf{a}_k)\|_2^2$$

- Not equivalent to ML problem, but often effective.

- Equivalent to ML problem, but higher-dimensional and constrained.

Question: is there a better way?

Range-only localization – Methods

Different methods to solve the problem:

- **global**: local solver initialized at ground truth
- **equationSOS**: Shor's relaxation of the POP lifted as a QCQP
- **sampleSOS**: parameterize problem using feasible samples and cost evaluations [2]
- **kernelSOS**: kernel sums of squares on the cost function
- **naive**: sample the search space and take the best sample

(Ground truth is not necessarily the global minimum for high noise)

Range-only localization – Error results

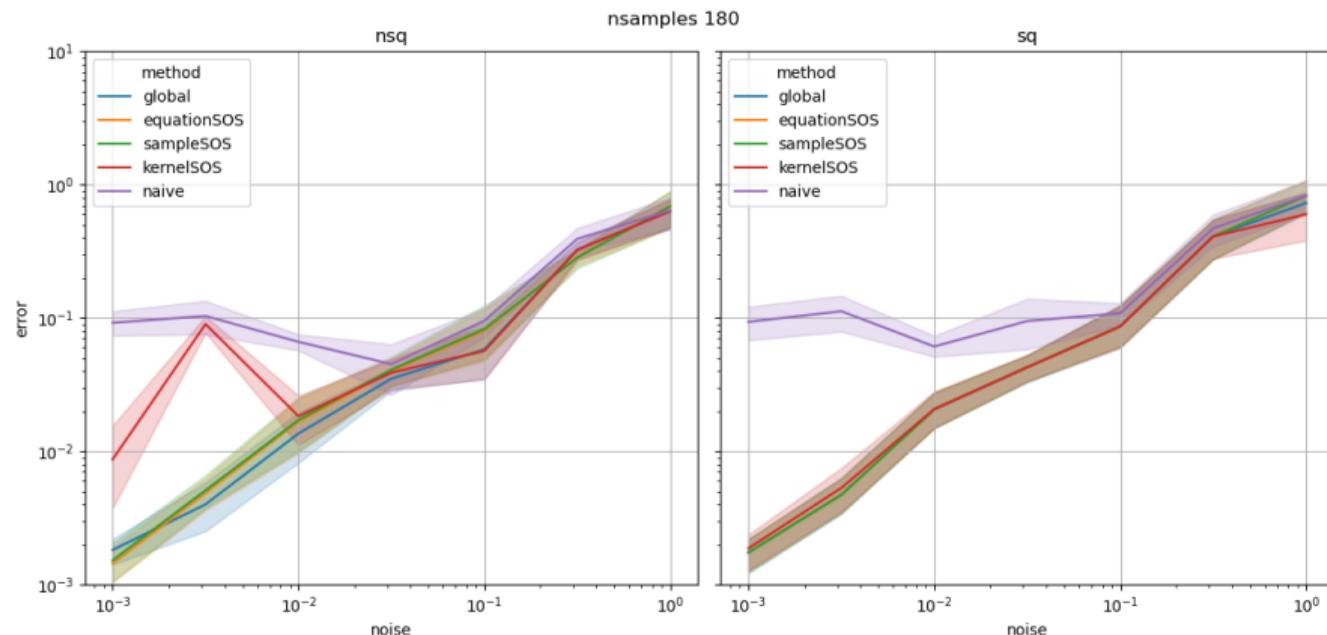


Figure 5: Distance to ground truth as a function of the noise level.

Range-only localization – Time results

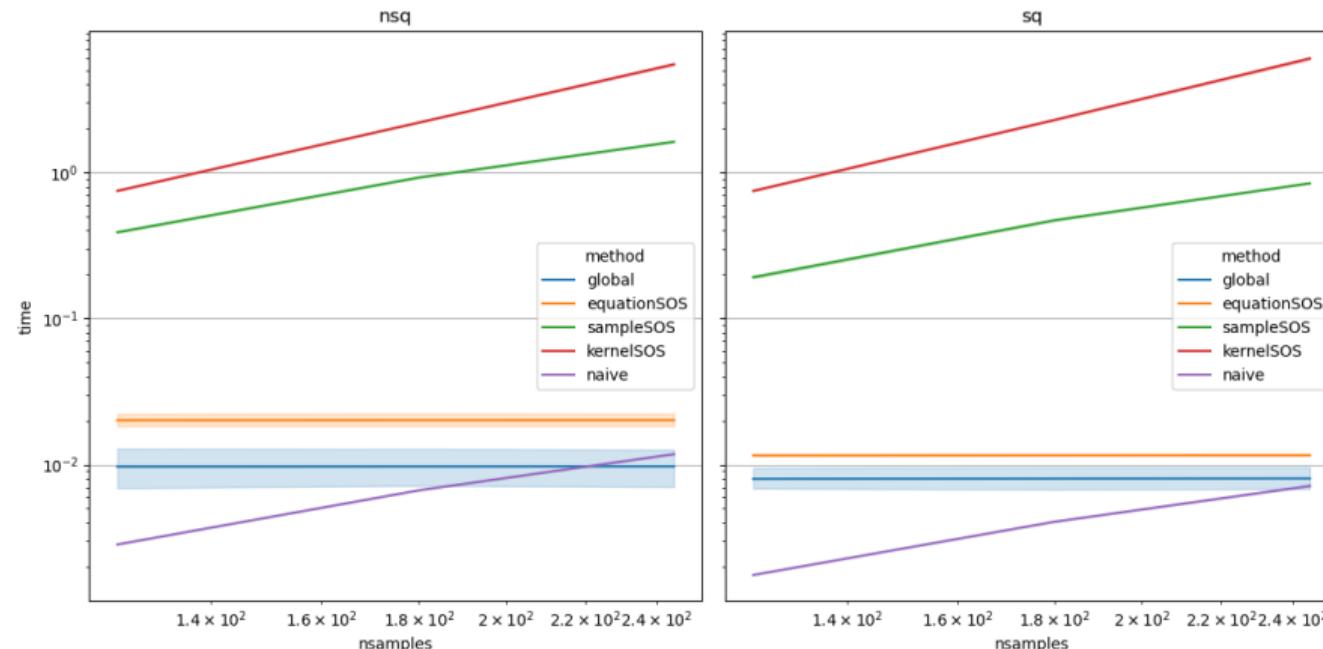


Figure 6: Time taken to solve the range-only localization problem w.r.t the number of samples.

Trajectory optimization

- Trajectory optimization problem:

$$\min_{\mathbf{u}_{1:T}} \|\mathbf{x}_{T+1}(\mathbf{u}_{1:T})\|^2 + \rho \sum_{t=1}^T \|\mathbf{u}_t\|^2 =: f_{\text{TO}}(\mathbf{u}_{1:T} | \mathbf{x}_{\text{start}}),$$

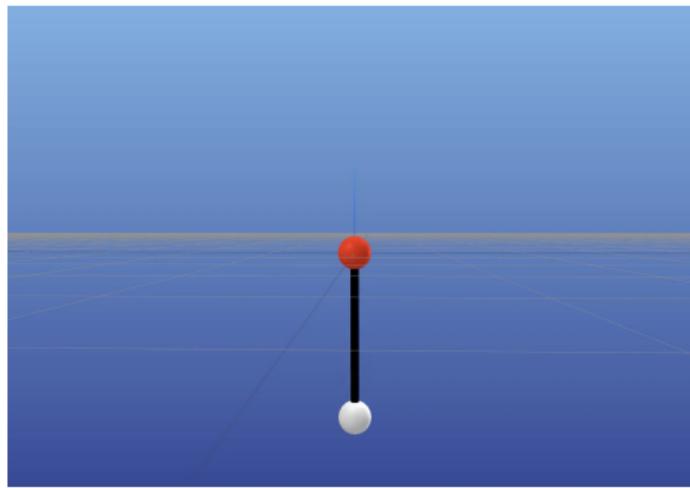
$$\text{s.t. } \mathbf{x}_{t+1} = f(\mathbf{x}_t, \mathbf{u}_t), \mathbf{x}_1 = \mathbf{x}_{\text{start}}$$

for a number of steps T , control penalty ρ , and initial state $\mathbf{x}_{\text{start}}$.

- Optimize over $\mathbf{u}_{1:T}$ only (single shooting)
- Black-box approach: evaluate final cost for different choices of $\mathbf{u}_{1:T}$

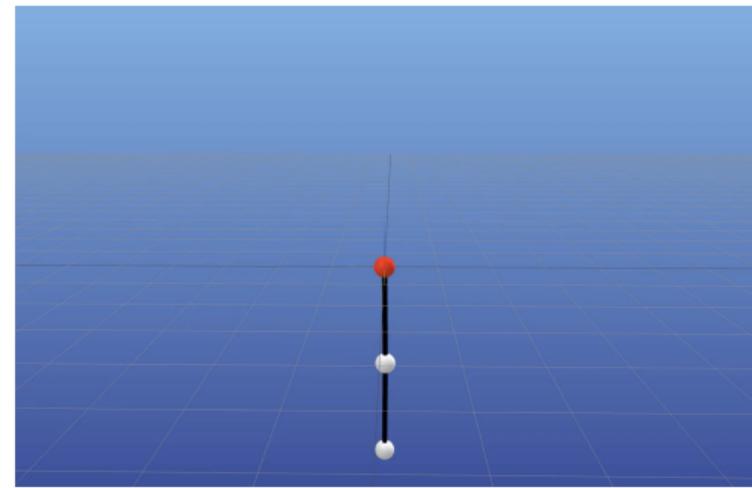
Trajectory optimization – Problems

Single pendulum swing-up



State $\mathbf{x} = [\theta, \dot{\theta}]$
Control $\mathbf{u} = [\tau]$

Double endulum swing-up



State $\mathbf{x} = [\theta_1, \dot{\theta}_1, \theta_2, \dot{\theta}_2]$
Control $\mathbf{u} = [\tau_1, \tau_2]$

Trajectory optimization – Results

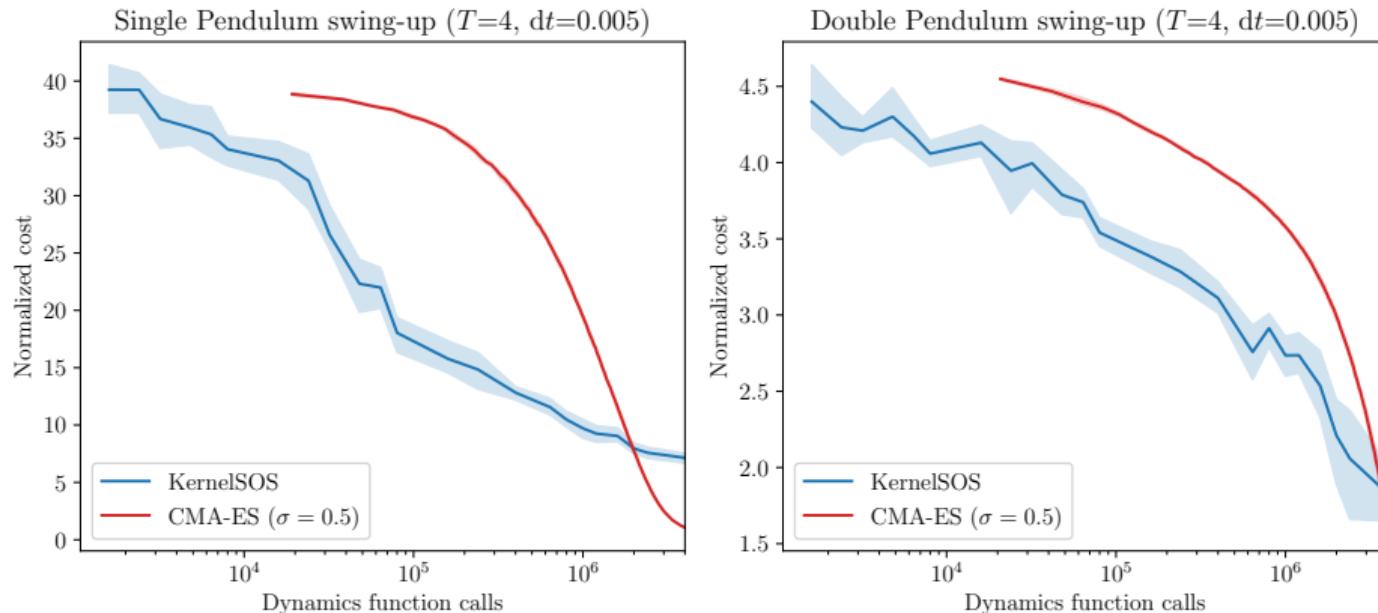
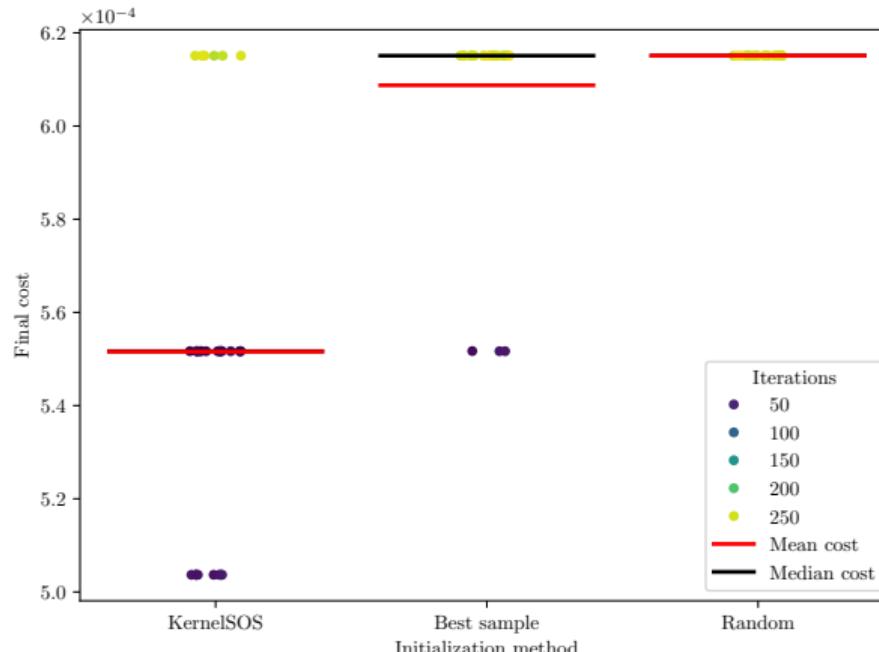


Figure 7: Comparison of performance of kernelSOS and CMA-ES [7] on black-box trajectory optimization.

KernelSOS to warm start a first-order method

- Double pendulum swing-up problem
- KernelSOS is used to warm start aligator's iLQR algorithm
- Initialization methods:
 - **Random**: take one random sample from the search space
 - **Best sample**: take the best sample out of n in the search space
 - **KernelSOS**: use the kernelSOS solution as the initial guess for iLQR

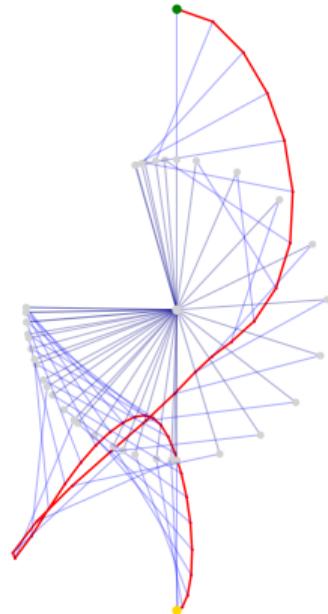
KernelSOS as a warm start – Cost results



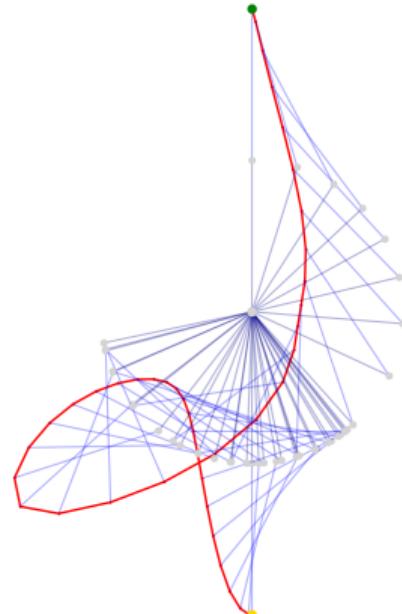
- Average cost improvement: 12%
- Max. cost improvement: 20%
- Discover new trajectories
→ next slide

Figure 8: Warm starting of iLQR using kernelSOS.

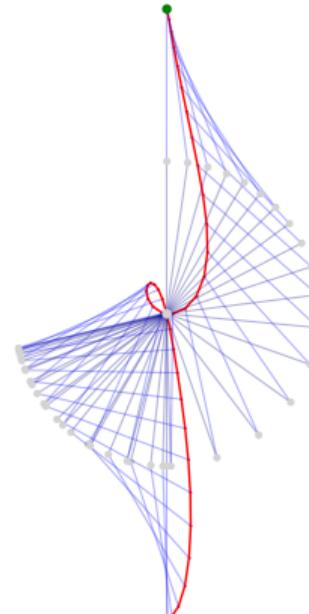
Visualization of the trajectories



Trajectory found by random init. (cost: 6.2×10^{-4})

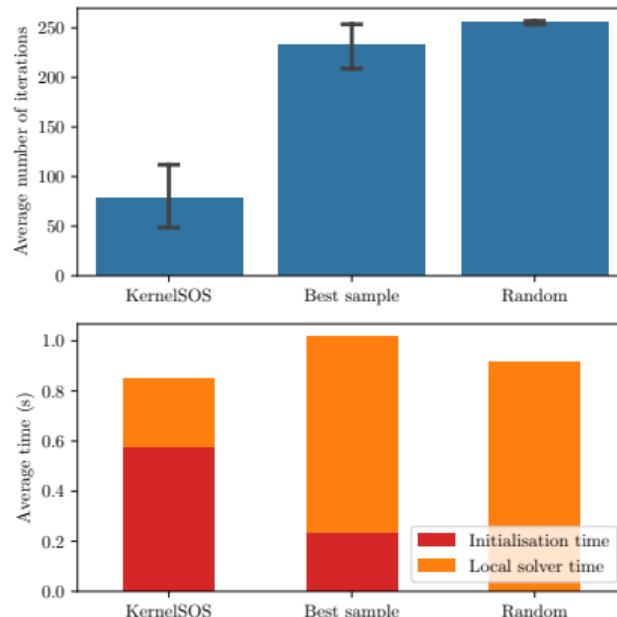


Trajectory found by best sample init. (cost: 5.5×10^{-4})



Trajectory found by kernelSOS init. (cost: 5.0×10^{-4})

KernelSOS as a warm start – Time results



- Reduces by 77% the average number of iterations needed for convergence
- Similar total time despite longer initialization time

KernelSOS finds trajectories with:

- lower cost
- faster convergence

Figure 9: Warm starting of iLQR using kernelSOS.

KernelSOS method

Application to robotics

Conclusion and future work

Plan

KernelSOS method

Problem statement

Range-only localization

KernelSOS algorithm

Application to robotics

Range-only localization

Trajectory optimization

Warm start for trajectory optimization

Conclusion and future work

Conclusion

Other future works

Conclusion

- KernelSOS is a strong new contender in the **black-box optimization** field
- Generalizes the SOS method to **non-polynomial functions**
- Applicable to a **wide range of problems**
- Discover **improved solutions** in the search space
- Lack of precision → **local solver to refine the solution**

Other future directions

- Application to **policy optimization**
- **Automatic parameter tuning**, for instance using Sobolev norm estimation
- Comparison to standard SOS, using **polynomial kernels**
- **Improve warm starting**, taking inspiration from Bayesian Optimization [5]
- Use of **first-order information**

References I

- [1] Amir Beck, Petre Stoica, and Jian Li. "Exact and Approximate Solutions of Source Localization Problems". In: *IEEE Transactions on Signal Processing* 56.5 (2008), pp. 1770–1778.
- [2] Diego Cifuentes and Pablo A. Parrilo. "Sampling Algebraic Varieties for Sum of Squares Programs". In: *SIAM Journal on Optimization* 27.4 (2017).
<http://arxiv.org/abs/1511.06751>, pp. 2381–2404.
- [3] Frederike Dümbgen, Connor Holmes, and Timothy D Barfoot. "Safe and smooth: Certified continuous-time range-only localization". In: *IEEE Robotics and Automation Letters* 8.2 (2022), pp. 1117–1124.
- [4] Frederike Dümbgen et al. "Toward globally optimal state estimation using automatically tightened semidefinite relaxations". In: *IEEE Transactions on Robotics* (2024).

References II

- [5] Roman Garnett. *Bayesian Optimization*. Cambridge University Press, 2023.
- [6] Trevor Halsted and Mac Schwager. “The Riemannian Elevator for Certifiable Distance-based Localization”. In: *Preprint* (2022).
- [7] Nikolaus Hansen. *The CMA Evolution Strategy: A Tutorial*.
<http://arxiv.org/abs/1604.00772>. 2023.
- [8] Sarah Müller, Alexander von Rohr, and Sebastian Trimpe. “Local policy search with Bayesian optimization”. In: *Advances in Neural Information Processing Systems 34* (2021), pp. 20708–20720.
- [9] Alessandro Rudi, Ulysse Marteau-Ferey, and Francis Bach. “Finding global minima via kernel approximations”. In: *Mathematical Programming* (2024), pp. 1–82.