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Layerwise Relevance Propagation

Initialization

Initialization:
R {a(L) if i = y (the class we want)

0 otherwise

"goldfish"

—
—> "street sign"

4.2|— "castle"

0 |— "printer"
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Layerwise Relevance Propagation
Propagation
LRP-0 rule:

0]
Rj(}) = a5 (lll)’j,k ‘Rl(ﬁzﬂ)
k Zj’ aj, wj’,k

1%§L+1)
ARg+D

(1+1)

Other rules exist (LRP-¢, LRP-y, 25)
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Figure 1: Reference image and relevance for the class 0.
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Semiring-based provenance annotations [7, 12]

Definition (Semiring)
A semiring (K, @, ®,0,1) is such that:
— ® distributes over @,

- (K, ®,0) is a commutative monoid,
- (K, ®,1) is a monoid such that O is absorbing

Example

The following structures are semirings:

Real semiring: (R, +, x,0,1)

Boolean semiring: ({1, T}, V,A, L, T)
Counting semiring: (N, 4+, x,0,1)
Viterbi semiring: ([0, 1], max, x,0,1)
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Semiring generalization of the LRP rule

Consider a semiring (K, ®, ®,0,1)
Conversion function:
O0:R —K

Initialization:

! 0 otherwise
Propagation rule:
(l)
_ @ Wi,k 2 R(H—l)
0 k
k ZJ/ ajl Wy k
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Semiring generalization of the LRP rule
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Boolean Semiring
{L, T}HV,A, LT

T ifz>0
O=z+— ]

L otherwise
Reference Boolean Semiring
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Counting Semiring
(N, +, x,0,1)

1 ifx>0
O=x— _
0 otherwise

Reference Counting semiring
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Viterbi Semiring
([0, 1], max, x,0,1)

@,,@ ‘
as’w
l ‘ J ]JC I+1
Ré) = max 0 R( +1)
ko \ max;s a " w . ’
€[0,1]
Reference Viterbi semiring
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Figure 6: Architecture of the VGG-16 network.
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Computing relevance for convolutional layers

Convolution over layer [ + 1

(1)
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Convolution over layer [
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Results for VGG-16: Boolean semiring
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Results for VGG-16: Counting semiring
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Class-wise mask — Boolean semiring
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Network pruning using LRP ranking
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Figure 7: Relevance mean over the training dataset
(Input layer)
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Conclusion

= We extended the Layerwise Relevance Propagation method to semirings
= We applied this method to the MNIST dataset and the VGG-16 network

= We showed that the method can be used for image mask computation and network
pruning
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