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Problem statement

"castle"
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Layerwise Relevance Propagation [11]
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Layerwise Relevance Propagation
Initialization

Initialization:
𝑅

(𝐿)
𝑖 =

{︃
𝑎

(𝐿)
𝑖 if 𝑖 = 𝑦 (the class we want)

0 otherwise
(1)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
...

4.2
...
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

"goldfish"
"street sign"

"castle"

"printer"
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Layerwise Relevance Propagation
Propagation

LRP-0 rule:

𝑅
(𝑙)
𝑗 =

∑︁
𝑘

𝑎
(𝑙)
𝑗 𝑤𝑗,𝑘∑︀

𝑗′ 𝑎
(𝑙)
𝑗′ 𝑤𝑗′,𝑘

· 𝑅
(𝑙+1)
𝑘 (LRP-0)

𝑤𝑗,1

𝑤𝑗,2

𝑤𝑗,𝑚

𝑎
(𝑙)
𝑗

𝑅
(𝑙)
𝑗

𝑅
(𝑙+1)
1

𝑅
(𝑙+1)
2

...

𝑅
(𝑙+1)
𝑚

Other rules exist (LRP-𝜀, LRP-𝛾, 𝑧ℬ)
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LRP Results visualization
Multilayer Perceptron on MNIST dataset

Figure 1: Reference image and relevance for the class 0.
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LRP Results visualization
VGG-16 on ImageNet dataset

Figure 2: Reference image Figure 3: Relevance for the class "castle"
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Semiring-based provenance annotations [7, 12]

Definition (Semiring)
A semiring (K, ⊕, ⊗, 0, 1) is such that:

– ⊗ distributes over ⊕,
– (K, ⊕, 0) is a commutative monoid,
– (K, ⊗, 1) is a monoid such that 0 is absorbing

Example
The following structures are semirings:

– Real semiring: (R, +, ×, 0, 1)
– Boolean semiring: ({⊥, ⊤}, ∨, ∧, ⊥, ⊤)
– Counting semiring: (N, +, ×, 0, 1)
– Viterbi semiring: ([0, 1], max, ×, 0, 1)
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Semiring generalization of the LRP rule

Consider a semiring (K, ⊕, ⊗, 0, 1)
Conversion function:

Θ : R −→ K

Initialization:
𝑅

(𝐿)
𝑖 =

{︃
1 if 𝑖 = 𝑦

0 otherwise
(2)

Propagation rule:

𝑅
(𝑙)
𝑗 =

⨁︁
𝑘

Θ

⎛⎝ 𝑎
(𝑙)
𝑗 𝑤𝑗,𝑘∑︀

𝑗′ 𝑎
(𝑙)
𝑗′ 𝑤𝑗′,𝑘

⎞⎠ ⊗ 𝑅
(𝑙+1)
𝑘 (K-LRP)
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Semiring generalization of the LRP rule
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Figure 4: Original network
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Figure 5: Annotated network (Boolean)
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Boolean Semiring
({⊥, ⊤}, ∨, ∧, ⊥, ⊤)

Θ = 𝑥 ↦−→
{︃

⊤ if 𝑥 ⩾ 𝜃

⊥ otherwise
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Counting Semiring
(N, +, ×, 0, 1)

Θ = 𝑥 ↦−→
{︃

1 if 𝑥 ⩾ 𝜃

0 otherwise
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Viterbi Semiring
([0, 1], max, ×, 0, 1)

𝑅
(𝑙)
𝑗 = max

𝑘

⎛⎝
⃒⃒⃒
𝑎

(𝑙)
𝑗 𝑤

(𝑙)
𝑗,𝑘

⃒⃒⃒
max𝑗′

⃒⃒⃒
𝑎

(𝑙)
𝑗′ 𝑤

(𝑙)
𝑗′,𝑘

⃒⃒⃒
⎞⎠

⏟  ⏞  
∈[0,1]

·𝑅(𝑙+1)
𝑘
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VGG-16 network
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Figure 6: Architecture of the VGG-16 network.
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Computing relevance for convolutional layers

𝑅
(𝑙)
𝑗 =

Convolution over layer 𝑙 + 1⏞  ⏟  ⨁︁
𝑘

Θ
⎛⎜⎝ 𝑎

(𝑙)
𝑗 𝑤𝑗,𝑘∑︀

𝑗′ 𝑎
(𝑙)
𝑗′ 𝑤𝑗′,𝑘

⎞⎟⎠
⏟  ⏞  
Convolution over layer 𝑙

⊗ 𝑅
(𝑙+1)
𝑘 (K-LRP)
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Results for VGG-16: Boolean semiring
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Results for VGG-16: Counting semiring
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Class-wise mask – Boolean semiring
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Network pruning using LRP ranking

Figure 7: Relevance mean over the training dataset
(Input layer)
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Conclusion

• We extended the Layerwise Relevance Propagation method to semirings
• We applied this method to the MNIST dataset and the VGG-16 network
• We showed that the method can be used for image mask computation and network

pruning
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