Large-Scale Semidefinite Programming through
GPU-Accelerated First-Order Optimization

Antoine Groudiev Heng Yang — Supervisor
Ecole Normale Supérieure Harvard University

September 9, 2025

Harvard John A. Paulson
School of Engineering
and Applied Sciences

N | PSL*

Large-Scale Semidefinite Programming through GPU-Accelerated First-Order Optimization 1/30

Introduction
©0000

Plan

Introduction

Large-Scale Semidefinite Programming through GPU-Accelerated First-Order Optimization 2/30

Introduction
00000

Semidefinite Programming (SDP)

Standard form of SDP:

<AZ‘,X> = bi, 1€ [m]

SDP
X =0 (SDP)

min (C, X) s.t. {
X

m Many applications (combinatorial optimization, control, physics, etc.)

m Various algorithms (interior-point methods, first-order methods, etc.)

m Multiple solvers (MOSEK, SDPT3, SeDuMi, SCS, etc.)

Large-Scale Semidefinite Programming through GPU-Accelerated First-Order Optimization 3/30

Introduction
0000

Trajectory Optimization

Motivation in robotics:

N—-1
min In(zn) + (g, ug, Ak)
ETS AN (TS SR DY Sl 1;)
T0 = Tinit (Traj-Opt)

st. § Fp(zp—1,uk—1, \e—1,2%) =0, k€ [N]
(uk—la Ak—la‘rk) € Ck:a k € [N]

Can be expressed as a Polynomial Optimization Problem (POP) and then relaxed as
an SDP using Lasserre’s hierarchy and tools such as TSSOS or SPOT [2].

Large-Scale Semidefinite Programming through GPU-Accelerated First-Order Optimization 4 /30

Introduction
000@0

Multi-block SDP

Specific multi-block structure of the SDP relaxation:
m () is the Cartesian product of the symmetric blocks
m (p C Qis the subset of Q for which all the blocks are PSD

m Example: Q=S x S and 2, =S% x §3
Problem (SDP) becomes:

<AZ7X> = bi, 7 € [m]

(Block-SDP)
X e QJ,_

min (C, X) s.t. {
X

Large-Scale Semidefinite Programming through GPU-Accelerated First-Order Optimization 5/30

Introduction
0000e

Contributions

Two main contributions:

m cuADMM: a GPU-accelerated implementation of a first-order method
(sGS-ADMM) for solving large-scale multi-block SDPs (Groudiev et al., 2025, [1])

m A new method to project a symmetric matrix onto the PSD cone without
computing any factorization (Kang et al., 2025, [3])

Large-Scale Semidefinite Programming through GPU-Accelerated First-Order Optimization 6 /30

Algorithms
[]

Algorithms
m ADMM

m Projection onto the PSD cone

Large-Scale Semidefinite Programming through GPU-Accelerated First-Order Optimization 7/30

Algorithms
€00

ADMM

Dual problem

cuADMM uses the symmetric Gauss—Seidel ADMM (sGS-ADMM) variant of the
ADMM algorithm, applied to the dual problem

Lagrangian dual of (Block-SDP):

AT -
y+s5=0 (Dual-SDP)
SeQy

yeR™, Se)

max (b,y) s.t. {

PSD cone is self-dual, so 2} = Q.

Large-Scale Semidefinite Programming through GPU-Accelerated First-Order Optimization 8 /30

Algorithms
ceo

ADMM

sGS-ADMM

Each iteration:
m Update each variable in sequence
m Requires solving a linear system involving AAT

m Requires projecting onto the PSD cones Q2

sGS-ADMM variant of ADMM:

m Symmetric Gauss-Seidel (sGS) updates (update y twice)

m Multiple blocks of variables

Large-Scale Semidefinite Programming through GPU-Accelerated First-Order Optimization 9/30

Algorithms
coe

ADMM

sGS-ADMM iteration

Step 1. Update y Step 3. Update y again (sGS step)
1 1 1
T§+2 :zb—A(Xk-i-Sk—C), 1 1
o o rtl = b—A(Xk—FSk—H—C),
o o

ki T\ ks
Yy 2 = (AA) Ts . yk+1 _ (AA-I—>—1 T§+1‘
Step 2. Update S

Xf“ = XF J(ATyk+§ —0),

Sf“ _ % (HQ+ (X}l)wrl) . Xf“) .

Step 4. Update X

Xk Z xb 4 1o (Sk+1 L ATYRHL C) '

Large-Scale Semidefinite Programming through GPU-Accelerated First-Order Optimization

10 / 30

Algorithms
00000

Projection onto the PSD cone

Plan

Introduction B Experiments

Algorithms

m Projection onto the PSD cone

Implementation

Large-Scale Semidefinite Programming through GPU-Accelerated First-Order Optimization 11 /30

Algorithms
(o] Jelele]

Projection onto the PSD cone

Standard method: eigenvalue decomposition

PSD projection of a symmetric matrix M € S™:

1
Mgy (M) = argmin o |V — M|Z,
Yesn

Standard method: eigenvalue decomposition (EVD). If M = QAQT, then:
Hgi(M) = @ diag[max{A1,0},..., max{\,, 0}]QT.

Drawbacks:

m not really GPU-friendly

m cannot be computed in half-precision

Large-Scale Semidefinite Programming through GPU-Accelerated First-Order Optimization 12 /30

Algorithms
[e]e] le]e]

Projection onto the PSD cone

Idea: apply RelLU using a polynomial

ReLU function: freLu(z) = max{z,0}. Then:

Mg (M) = Q diag[freLu(M), - - -, frelu(An)]QT = freLu(M).

Projection amounts to applying freLu to the eigenvalues of M

Large-Scale Semidefinite Programming through GPU-Accelerated First-Order Optimization 13 /30

Algorithms
[e]e] le]e]

Projection onto the PSD cone

Idea: apply RelLU using a polynomial

ReLU function: freLu(z) = max{z,0}. Then:

Mg (M) = Q diag[freLu(M), - - -, frelu(An)]QT = freLu(M).
Projection amounts to applying freLu to the eigenvalues of M
Idea: approximate freLy using a polynomial p:
Mgn (M) = p(M) = Qdiag[p(M), . ..,p(A)]Q .
Benefits:

m only requires matrix multiplications and additions = GPU-friendly

m can be computed in half-precision

Large-Scale Semidefinite Programming through GPU-Accelerated First-Order Optimization 13 /30

Algorithms
[e]e]e] Jo]

Projection onto the PSD cone

Designing a good polynomial

For performance purposes, we look for p as a composite polynomial of depth T

p(x) = fro fr—io---o fi(x),

Large-Scale Semidefinite Programming through GPU-Accelerated First-Order Optimization 14 / 30

Algorithms
[e]e]e] Jo]

Projection onto the PSD cone

Designing a good polynomial

For performance purposes, we look for p as a composite polynomial of depth T

p(x) = fro fr—io---o fi(x),

Note that:
1, z >0,
freLu(z) = %x(l +sign(x)) with sign(z) :== 0.5, =0,
-1, = <0.

Since approximating sign is easier than approximating freLy, We use a two-steps
approach.

Large-Scale Semidefinite Programming through GPU-Accelerated First-Order Optimization 14 / 30

Algorithms
[e]e]ele]]

Projection onto the PSD cone

Two steps to design p

Step 1. Choose the optimal coefficients for sign:

{f;}tT:l = arg min max |fro fr_10---o fi(zx) — sign(z)|
froofr wEl=L—e]ule 1]

subject to ft € Rgfd[m], t=1,...,T,

which can be solved using the Remez algorithm.

Step 2. Refine the coefficients for freLy, with the loss function:

U fr,..., [1) (14 frofr_io---0 fi(x)) = freLu(®)|.

= z€[—1,1] 511}

In practice, we use Sfoat instead of [—1,1].

Large-Scale Semidefinite Programming through GPU-Accelerated First-Order Optimization 15/ 30

Implementation
[1)

Implementation
m cuADMM

Large-Scale Semidefinite Programming through GPU-Accelerated First-Order Optimization 16 / 30

Implementation
oce

GPU Implementation

GPU Implementation of sGS-ADMM, Lanczos, LOBPCG, and PSD cone projection

C++ as host language
m CUDA kernels for acceleration

m Rely on cuSOLVER and cuBLAS libraries

Open-sourced at:
https://github.com/ComputationalRobotics/psd_projection

https://github.com/ComputationalRobotics/cuADMM

Large-Scale Semidefinite Programming through GPU-Accelerated First-Order Optimization 17 / 30

https://github.com/ComputationalRobotics/psd_projection
https://github.com/ComputationalRobotics/cuADMM

Implementation

cuADMM

Implementation of cuADMM

Ts Y X M o, (X
— — PSD cone projection +(X)
GPU
- PT large GPU
- Composite polynomial filtering
+
CPU
B 0,w T
- (Lor™)™! o EVD @ max(0.W) Q
......... GPU o «
: — | QR + streams |_, :
v — |med
GPU H X X H
P - GPU
— | Batched Jacobi|— x X
= L small X X

Figure 1: lllustration of the GPU implementation of ADMM.

Large-Scale Semidefinite Programming through GPU-Accelerated First-Order Optimization

18 / 30

Experiments
[]

I Experiments

m Comparison of cuADMM and SDP
solvers

m Comparison of PSD projection
methods

m Filtering projection in ADMM

19 /30

Large-Scale Semidefinite Programming through GPU-Accelerated First-Order Optimization

Experiments

[Je}

Comparison of cuhRDMM and SDP solvers

Setup

Comparison of the performances of three solvers:

m MOSEK (Interior-point method, CPU)

m ADMM+ (First-order method, CPU)

m cuADMM (First-order method, GPU), both sGS-ADMM and standard ADMM
Datasets:

m Trajectory optimization problems generated by SPOT |[2]

m Generic multi-block SDPs collected by Mittelmann [4]

Solve up to accuracy 1072 or timeout after 10 hours.

Large-Scale Semidefinite Programming through GPU-Accelerated First-Order Optimization 20 /30

Results on SPOT problems

Problem Solver Time (s) Max. KKT residual 7 Primal distance
MOSEK 213.4 8.47 x 1077 9.20 x 1074
ADMM+! 1,649 2.20 x 1073 1.85 x 1074
Push Box CUADMM 905.1 9.98 x 10~ 2.96 x 10~
CUADMM (sGS) 278.0 9.97 x 1074 4.97 x 1074
MOSEK 36.6 2.44 x 1077 8.3 x 1074
Push T ADMM-+ — — —
. cUADMM 142.0 1.61 x 107° 9.03 x 1074
CUADMM (sGS) 186.6 8.24 x 1074 8.99 x 1074
MOSEK 12,017 1.91 x 1076 —
ADMM-+ — — —
Planar Hand CUADMM o . .
cuADMM (sGS) 1,281 9.95 x 1074 —
MOSEK 32,593 7.09 x 1076 —
Tunnel ADMM+ — — —
unne cUADMM — — —

cUADMM (sGS) 2,491 9.97 x 1074 —

Experiments
[Jolele}

Comparison of PSD projection methods

Method

Two metrics to evaluate the quality of the projection:
m Execution time

m Relative error w.r.t. the ground truth (computed with cuSOLVER FP64):

T
e

F

F

In the context of ADMM, execution time is often more important than accuracy

Large-Scale Semidefinite Programming through GPU-Accelerated First-Order Optimization 22 /30

Experiments
[o] lele}

Comparison of PSD projection methods

Setup

Projection methods:

m cuSOLVER FP64: classical factorization-based method with cuSOLVER(ground
truth)

m cuSOLVER FP32: same as cuSOLVER FP64, single precision
m Composite FP32: our filtering-based method in FP32 with 31 GEMMs
m Composite FP32 (em.): same as Composite FP32, with BF16x9 emulation

m Composite FP16: our filtering-based method in FP16 with 22 GEMMs

Datasets: matrices generated using the Matrix Depot package [5]

Large-Scale Semidefinite Programming through GPU-Accelerated First-Order Optimization 23 /30

Comparison of PSD projection methods

Results: execution time

Experiments

[e]e] le]

n = 5000 n = 10000 n = 20000
2x 1071 é 1004 + = = 8x 100 - =
i - - 8x 10! 6 10°
o 6x 107! 4% 10°
8x10-2 4x1071 % ﬁ
= 6x1072 2x10°
g 21071
g . x
= 4x10
= 1004
8x10°1
107" 6x 1071
2x107% + 8 %1072 ¥ + + + + +
i - %I 6x10-2 == axaot =
1 = = - o
10-2 4 + + 4x 1072

cuSOLVER FP64
cuSOLVER FP32

Polar Express FP32

Polar Express FP16
Newton-Schulz FP32
Newton-Schulz FP16
Composite FP32 (emulated)
Composite FP16

Figure 2: Boxplots for different PSD cone projection methods’ execution time on B200 GPU.

m FP32: composite is up to 2x faster than cuSOLVER

m FP16: composite is up to 10x faster than cuSOLVER (single)

Large-Scale Semidefinite Programming through GPU-Accelerated First-Order Optimization

24 / 30

Experiments

[e]e]e]]

Comparison of PSD projection methods

Results: relative error

n = 5000 n = 10000 n = 20000
100
+ +
+ +
107! ¥
) + m cuSOLVER FP32
| 10779 = 3 BN Polar Express FP32
5 103 + BB Polar Express FP16
5 @ mE Newton-Schulz FP32
° * wed ¥ * B Newton-Schulz FP16
ki 4 BN Composite FP32 (emulated)
= 10 71 Composite FP16
107° 4
1077
10°%

Figure 3: Boxplots for different PSD cone projection methods' relative error on B200 GPU.

m FP32: cuSOLVER is 2.5 to 10x more accurate than composite

m FP16: cuSOLVER (single) is up to 200x more accurate than composite

Large-Scale Semidefinite Programming through GPU-Accelerated First-Order Optimization 25 /30

Experiments

@00
Filtering projection in ADMM

Warm-starting ADMM with low-precision projections

At first, speed is more important than projection accuracy; later, accuracy is more
important than speed for convergence

Does using low-precision projections hurt convergence?

Two-phase approach for the experiments on Mittelmann's single-block datasets:

m First phase: use Composite FP16 instead of cuSOLVER FP64 for the projection

m Then switch to cuSOLVER FP64 once n < 1072

Large-Scale Semidefinite Programming through GPU-Accelerated First-Order Optimization 26 / 30

Results: comparison of convergence

FP64 FP64 FP64 FP64
-1
10 10!
10 102 10° 10°
103 104 107! 10!
10 10 102 102
100 10 100 10% 100 10° 10° 10
FP32 FP32 FP32 FP32
1
10 10!
10° 0
102 -2 10
=~ ~ 10 ~ -~
1
107 10 10 10
1072
10 10! 102
100 10° 100 10 100 10 10° 10
TF16 TF16 TF16 TF16
1
10 10
102 10 10° 100
0% | 103 107! 10!
104 10 102 102
100 10° 100 10° 100 10 100 10°
Tteration Tteration Iteration Tteration

(a) G55me, n = 5000 (b) G59mc, n = 5000 (c) G60_mb, n = 7000 (d) G60mc, n = 7000

Experiments

ooe
Filtering projection in ADMM

Conclusion

cuADMM, a GPU-accelerated implementation of sGS-ADMM for solving large-scale
multi-block SDPs:

m outperforms CPU-based interior-point and first-order methods on large-scale
problems

Composite polynomial filtering for PSD cone projection:
m up to 10x faster than factorization-based methods on large matrices

m less accurate than factorization-based methods

m can be used to warm-start ADMM with low-precision projections = no
convergence degradation

Large-Scale Semidefinite Programming through GPU-Accelerated First-Order Optimization 28 / 30

References

Filtering projection in ADMM

References |

[1] Antoine Groudiev, Shucheng Kang, and Heng Yang. “cuADMM: GPU-Accelerated
First-Order Optimization for Large-Scale Multi-Block Semidefinite Programs”. In:
2025 RSS Workshop on Fast Motion Planning and Control in the Era of Parallelism.
2025. URL: https://openreview.net/forum?id=SCrhEJ29H0.

[2] Shucheng Kang, Guorui Liu, and Heng Yang. “Global Contact-Rich Planning with
Sparsity-Rich Semidefinite Relaxations”. In: Robotics: Science and Systems (RSS).
2025.

[3] Shucheng Kang et al. “Factorization-free Orthogonal Projection onto the Positive
Semidefinite Cone with Composite Polynomial Filtering”. In: arXiv preprint (2025).
URL: https://arxiv.org/abs/2507.09165.

[4] Hans D Mittelmann. Several SDP-codes on sparse and other SDP problems. 2006.

Large-Scale Semidefinite Programming through GPU-Accelerated First-Order Optimization 29 /30

https://openreview.net/forum?id=SCrhEJ29HO
https://arxiv.org/abs/2507.09165

References

Filtering projection in ADMM

References |l

[5] Weijian Zhang and Nicholas J Higham. “Matrix Depot: an extensible test matrix
collection for Julia”. In: Peer)J Computer Science 2 (2016), e58.

Large-Scale Semidefinite Programming through GPU-Accelerated First-Order Optimization 30 /30

	Introduction
	Algorithms
	ADMM
	Projection onto the PSD cone

	Implementation
	cuADMM

	Experiments
	Comparison of cuADMM and SDP solvers
	Comparison of PSD projection methods
	Filtering projection in ADMM

	References

