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Semidefinite Programming (SDP)

Standard form of SDP:

min
𝑋

⟨𝐶, 𝑋⟩ s.t.
{︃

⟨𝐴𝑖, 𝑋⟩ = 𝑏𝑖, 𝑖 ∈ [𝑚]
𝑋 ⪰ 0

(SDP)

Many applications (combinatorial optimization, control, physics, etc.)

Various algorithms (interior-point methods, first-order methods, etc.)

Multiple solvers (MOSEK, SDPT3, SeDuMi, SCS, etc.)
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Trajectory Optimization

Motivation in robotics:

min
{𝑥𝑘}𝑁

𝑘=0,{𝑢𝑘}𝑁−1
𝑘=0 ,{𝜆𝑘}𝑁−1

𝑘=0

ℓ𝑁 (𝑥𝑁 ) +
𝑁−1∑︁

𝑘=0
ℓ(𝑥𝑘, 𝑢𝑘, 𝜆𝑘)

s.t.

⎧
⎪⎪⎨
⎪⎪⎩

𝑥0 = 𝑥init

𝐹𝑘(𝑥𝑘−1, 𝑢𝑘−1, 𝜆𝑘−1, 𝑥𝑘) = 0, 𝑘 ∈ [𝑁 ]
(𝑢𝑘−1, 𝜆𝑘−1, 𝑥𝑘) ∈ 𝒞𝑘, 𝑘 ∈ [𝑁 ]

(Traj-Opt)

Can be expressed as a Polynomial Optimization Problem (POP) and then relaxed as
an SDP using Lasserre’s hierarchy and tools such as TSSOS or SPOT [2].
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Multi-block SDP

Specific multi-block structure of the SDP relaxation:

Ω is the Cartesian product of the symmetric blocks

Ω+ ⊂ Ω is the subset of Ω for which all the blocks are PSD

Example: Ω = S2 × S3 and Ω+ = S2
+ × S3

+

Problem (SDP) becomes:

min
𝑋

⟨𝐶, 𝑋⟩ s.t.
{︃

⟨𝐴𝑖, 𝑋⟩ = 𝑏𝑖, 𝑖 ∈ [𝑚]
𝑋 ∈ Ω+

(Block-SDP)
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Contributions

Two main contributions:

cuADMM: a GPU-accelerated implementation of a first-order method
(sGS-ADMM) for solving large-scale multi-block SDPs (Groudiev et al., 2025, [1])

A new method to project a symmetric matrix onto the PSD cone without
computing any factorization (Kang et al., 2025, [3])
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ADMM

Dual problem

cuADMM uses the symmetric Gauss–Seidel ADMM (sGS-ADMM) variant of the
ADMM algorithm, applied to the dual problem

Lagrangian dual of (Block-SDP):

max
𝑦∈R𝑚, 𝑆∈Ω

⟨𝑏, 𝑦⟩ s.t.
{︃

𝐴⊤𝑦 + 𝑆 = 𝐶

𝑆 ∈ Ω+
(Dual-SDP)

PSD cone is self-dual, so Ω*
+ = Ω+
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ADMM

sGS-ADMM

Each iteration:

Update each variable in sequence

Requires solving a linear system involving 𝐴𝐴⊤

Requires projecting onto the PSD cones Ω+

sGS-ADMM variant of ADMM:

Symmetric Gauss-Seidel (sGS) updates (update 𝑦 twice)

Multiple blocks of variables
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ADMM

sGS-ADMM iteration

Step 1. Update 𝑦

𝑟
𝑘+ 1

2
𝑠 := 1

𝜎
𝑏 − 𝐴

(︂ 1
𝜎

𝑋𝑘 + 𝑆𝑘 − 𝐶

)︂
,

𝑦𝑘+ 1
2 =

(︁
𝐴𝐴⊤

)︁−1
𝑟

𝑘+ 1
2

𝑠 .

Step 2. Update 𝑆

𝑋𝑘+1
𝑏 := 𝑋𝑘 + 𝜎(𝐴⊤𝑦𝑘+ 1

2 − 𝐶),

𝑆𝑘+1
𝑏 = 1

𝜎

(︁
ΠΩ+

(︁
𝑋𝑘+1

𝑏

)︁
− 𝑋𝑘+1

𝑏

)︁
.

Step 3. Update 𝑦 again (sGS step)

𝑟𝑘+1
𝑠 := 1

𝜎
𝑏 − 𝐴

(︂ 1
𝜎

𝑋𝑘 + 𝑆𝑘+1 − 𝐶

)︂
,

𝑦𝑘+1 =
(︁
𝐴𝐴⊤

)︁−1
𝑟𝑘+1

𝑠 .

Step 4. Update 𝑋

𝑋𝑘+1 = 𝑋𝑘 + 𝜏𝜎
(︁
𝑆𝑘+1 + 𝐴⊤𝑦𝑘+1 − 𝐶

)︁
.
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Projection onto the PSD cone

Standard method: eigenvalue decomposition
PSD projection of a symmetric matrix 𝑀 ∈ S𝑛:

ΠS𝑛
+

(𝑀) := arg min
𝑌 ∈S𝑛

+

1
2 ‖𝑌 − 𝑀‖2

F ,

Standard method: eigenvalue decomposition (EVD). If 𝑀 = 𝑄Λ𝑄⊤, then:

ΠS𝑛
+

(𝑀) = 𝑄 diag[max{𝜆1, 0}, . . . , max{𝜆𝑛, 0}]𝑄⊤.

Drawbacks:

not really GPU-friendly

cannot be computed in half-precision
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Projection onto the PSD cone

Idea: apply ReLU using a polynomial
ReLU function: 𝑓ReLU(𝑥) = max{𝑥, 0}. Then:

ΠS𝑛
+

(𝑀) = 𝑄 diag[𝑓ReLU(𝜆1), . . . , 𝑓ReLU(𝜆𝑛)]𝑄⊤ = 𝑓ReLU(𝑀).

Projection amounts to applying 𝑓ReLU to the eigenvalues of 𝑀 !

Idea: approximate 𝑓ReLU using a polynomial 𝑝:

ΠS𝑛
+

(𝑀) ≈ 𝑝(𝑀) = 𝑄 diag[𝑝(𝜆1), . . . , 𝑝(𝜆𝑛)]𝑄⊤.

Benefits:

only requires matrix multiplications and additions =⇒ GPU-friendly

can be computed in half-precision
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Projection onto the PSD cone

Designing a good polynomial
For performance purposes, we look for 𝑝 as a composite polynomial of depth 𝑇 :

𝑝(𝑥) = 𝑓𝑇 ∘ 𝑓𝑇 −1 ∘ · · · ∘ 𝑓1(𝑥),

Note that:

𝑓ReLU(𝑥) = 1
2𝑥(1 + sign(𝑥)) with sign(𝑥) :=

⎧
⎪⎪⎨
⎪⎪⎩

1, 𝑥 > 0,

0.5, 𝑥 = 0,

−1, 𝑥 < 0.

Since approximating sign is easier than approximating 𝑓ReLU, we use a two-steps
approach.
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Projection onto the PSD cone

Two steps to design 𝑝

Step 1. Choose the optimal coefficients for sign:

{𝑓⋆
𝑡 }𝑇

𝑡=1 = arg min
𝑓1,...,𝑓𝑇

max
𝑥∈[−1,−𝜀]∪[𝜀,1]

|𝑓𝑇 ∘ 𝑓𝑇 −1 ∘ · · · ∘ 𝑓1(𝑥) − sign(𝑥)|

subject to 𝑓𝑡 ∈ Rodd
𝑑𝑡

[𝑥], 𝑡 = 1, . . . , 𝑇,

which can be solved using the Remez algorithm.

Step 2. Refine the coefficients for 𝑓ReLU, with the loss function:

ℓ(𝑓𝑇 , . . . , 𝑓1) := max
𝑥∈[−1,1]

⃒⃒
⃒⃒1
2𝑥(1 + 𝑓𝑇 ∘ 𝑓𝑇 −1 ∘ · · · ∘ 𝑓1(𝑥)) − 𝑓ReLU(𝑥)

⃒⃒
⃒⃒ .

In practice, we use 𝑆float instead of [−1, 1].
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GPU Implementation

GPU Implementation of sGS-ADMM, Lanczos, LOBPCG, and PSD cone projection

C++ as host language

CUDA kernels for acceleration

Rely on cuSOLVER and cuBLAS libraries

Open-sourced at:

https://github.com/ComputationalRobotics/psd_projection

https://github.com/ComputationalRobotics/cuADMM
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cuADMM

Implementation of cuADMM

𝑟𝑠

𝑃 ⊤
GPU

(︀
𝐿𝐷𝐿⊤)︀−1

CPU

𝑃
GPU

...

𝑦

...

𝑋

large

med.

small

...

...

𝑀 PSD cone projection

Composite polynomial filtering
GPU

EVD

QR + streams
GPU

Batched Jacobi
GPU ...

𝑄

×

×

×
×

...

max(0, 𝑊 )
×

×

×
×

...

𝑄⊤

...

ΠΩ+ (𝑋)

Figure 1: Illustration of the GPU implementation of ADMM.
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Comparison of cuADMM and SDP solvers

Setup

Comparison of the performances of three solvers:

MOSEK (Interior-point method, CPU)

ADMM+ (First-order method, CPU)

cuADMM (First-order method, GPU), both sGS-ADMM and standard ADMM

Datasets:

Trajectory optimization problems generated by SPOT [2]

Generic multi-block SDPs collected by Mittelmann [4]

Solve up to accuracy 10−3 or timeout after 10 hours.
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Results on SPOT problems
Problem Solver Time (s) Max. KKT residual 𝜂 Primal distance

Push Box
MOSEK 213.4 8.47 × 10−7 9.20 × 10−4

ADMM+1 1, 649 2.20 × 10−3 1.85 × 10−4

cuADMM 905.1 9.98 × 10−4 2.96 × 10−4

cuADMM (sGS) 278.0 9.97 × 10−4 4.97 × 10−4

Push T
MOSEK 36.6 2.44 × 10−7 8.3 × 10−4

ADMM+ — — —
cuADMM 142.0 1.61 × 10−5 9.03 × 10−4

cuADMM (sGS) 186.6 8.24 × 10−4 8.99 × 10−4

Planar Hand
MOSEK 12, 017 1.91 × 10−6 —
ADMM+ — — —
cuADMM — — —

cuADMM (sGS) 1, 281 9.95 × 10−4 —

Tunnel
MOSEK 32, 593 7.09 × 10−6 —
ADMM+ — — —
cuADMM — — —

cuADMM (sGS) 2, 491 9.97 × 10−4 —
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Comparison of PSD projection methods

Method

Two metrics to evaluate the quality of the projection:

Execution time

Relative error w.r.t. the ground truth (computed with cuSOLVER FP64):
⃦⃦
⃦𝐴+ − ΠS𝑛

+
(𝐴)

⃦⃦
⃦

F⃦⃦
⃦ΠS𝑛

+
(𝐴)

⃦⃦
⃦

F

In the context of ADMM, execution time is often more important than accuracy
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Comparison of PSD projection methods

Setup

Projection methods:

cuSOLVER FP64: classical factorization-based method with cuSOLVER(ground
truth)

cuSOLVER FP32: same as cuSOLVER FP64, single precision

Composite FP32: our filtering-based method in FP32 with 31 GEMMs

Composite FP32 (em.): same as Composite FP32, with BF16x9 emulation

Composite FP16: our filtering-based method in FP16 with 22 GEMMs

Datasets: matrices generated using the Matrix Depot package [5]

Large-Scale Semidefinite Programming through GPU-Accelerated First-Order Optimization 23 / 30



Introduction Algorithms Implementation Experiments References

Comparison of PSD projection methods

Results: execution time
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Figure 2: Boxplots for different PSD cone projection methods’ execution time on B200 GPU.

FP32: composite is up to 2× faster than cuSOLVER

FP16: composite is up to 10× faster than cuSOLVER (single)
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Comparison of PSD projection methods

Results: relative error
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Figure 3: Boxplots for different PSD cone projection methods’ relative error on B200 GPU.

FP32: cuSOLVER is 2.5 to 10× more accurate than composite

FP16: cuSOLVER (single) is up to 200× more accurate than composite
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Filtering projection in ADMM

Warm-starting ADMM with low-precision projections

At first, speed is more important than projection accuracy; later, accuracy is more
important than speed for convergence

Does using low-precision projections hurt convergence?

Two-phase approach for the experiments on Mittelmann’s single-block datasets:

First phase: use Composite FP16 instead of cuSOLVER FP64 for the projection

Then switch to cuSOLVER FP64 once 𝜂 ⩽ 10−2
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Results: comparison of convergence

(a) G55mc, 𝑛 = 5000 (b) G59mc, 𝑛 = 5000 (c) G60_mb, 𝑛 = 7000 (d) G60mc, 𝑛 = 7000
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Filtering projection in ADMM

Conclusion

cuADMM, a GPU-accelerated implementation of sGS-ADMM for solving large-scale
multi-block SDPs:

outperforms CPU-based interior-point and first-order methods on large-scale
problems

Composite polynomial filtering for PSD cone projection:

up to 10× faster than factorization-based methods on large matrices

less accurate than factorization-based methods

can be used to warm-start ADMM with low-precision projections =⇒ no
convergence degradation
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Filtering projection in ADMM
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Filtering projection in ADMM
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